Large-scale flow simulations using lattice Boltzmann method with AMR following free-surface on multiple GPUs

2021 ◽  
Vol 264 ◽  
pp. 107871
Author(s):  
Seiya Watanabe ◽  
Takayuki Aoki
2019 ◽  
Vol 33 (1) ◽  
pp. 55-62
Author(s):  
Seiya WATANABE ◽  
Takayuki AOKI ◽  
Yuta HASEGAWA ◽  
Jun KAWAHARA ◽  
Hirotada HASHIMOTO

2009 ◽  
Vol 23 (24) ◽  
pp. 4907-4932 ◽  
Author(s):  
ABBAS FAKHARI ◽  
MOHAMMAD HASSAN RAHIMIAN

In this paper, the lattice Boltzmann method is employed to simulate buoyancy-driven motion of a single bubble. First, an axisymmetric bubble motion under buoyancy force in an enclosed duct is investigated for some range of Eötvös number and a wide range of Archimedes and Morton numbers. Numerical results are compared with experimental data and theoretical predictions, and satisfactory agreement is shown. It is seen that increase of Eötvös or Archimedes number increases the rate of deformation of the bubble. At a high enough Archimedes value and low Morton numbers breakup of the bubble is observed. Then, a bubble rising and finally bursting at a free surface is simulated. It is seen that at higher Archimedes numbers the rise velocity of the bubble is greater and the center of the free interface rises further. On the other hand, at high Eötvös values the bubble deforms more and becomes more stretched in the radial direction, which in turn results in lower rise velocity and, hence, lower elevations for the center of the free surface.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 148
Author(s):  
Seyed Amin Nabavizadeh ◽  
Himel Barua ◽  
Mohsen Eshraghi ◽  
Sergio D. Felicelli

A multi-distribution lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model with a multiple-grid lattice Boltzmann (MGLB) model is proposed to efficiently simulate natural convection over a wide range of Prandtl numbers. In this method, different grid sizes and time steps for heat transfer and fluid flow equations are chosen. The model is validated against natural convection in a square cavity, since extensive benchmark solutions are available for that problem. The proposed method can resolve the computational difficulty in simulating problems with very different time scales, in particular, when using extremely low or high Prandtl numbers. The technique can also enhance computational speed and stability while keeping the simplicity of the BGK method. Compared with the conventional lattice Boltzmann method, the simulation time can be reduced up to one-tenth of the time while maintaining the accuracy in an acceptable range. The proposed model can be extended to other lattice Boltzmann collision models and three-dimensional cases, making it a great candidate for large-scale simulations.


2009 ◽  
Vol 228 (4) ◽  
pp. 1139-1156 ◽  
Author(s):  
G. Thömmes ◽  
J. Becker ◽  
M. Junk ◽  
A.K. Vaikuntam ◽  
D. Kehrwald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document