Double ionization of hydrogen molecules in a high-intensity linearly polarized laser pulse

2021 ◽  
Vol 764 ◽  
pp. 138214
Author(s):  
Dan Wu ◽  
Qingyi Li ◽  
Jun Wang ◽  
Fuming Guo ◽  
Jigen Chen ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Tina Ebert ◽  
René Heber ◽  
Torsten Abel ◽  
Johannes Bieker ◽  
Gabriel Schaumann ◽  
...  

Abstract Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction. We present cone-shaped microstructures made out of silicon and titanium created by ultrashort laser pulse processing with different characteristics. In addition, we illustrate a process chain based on moulding to recreate the laser-processed samples out of polydimethylsiloxane, polystyrol and copper. With all described methods, samples of large sizes can be manufactured, therefore allowing time-efficient, cost-reduced and reliable ways to fabricate large quantities of identical targets.


2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Tiago de Faria Pinto ◽  
Jan Mathijssen ◽  
Randy Meijer ◽  
Hao Zhang ◽  
Alex Bayerle ◽  
...  

AbstractIn this work, the expansion dynamics of liquid tin micro-droplets irradiated by femtosecond laser pulses were investigated. The effects of laser pulse duration, energy, and polarization on ablation, cavitation, and spallation dynamics were studied using laser pulse durations ranging from 220 fs to 10 ps, with energies ranging from 1 to 5 mJ, for micro-droplets with an initial radius of 15 and 23 $$\upmu$$ μ m. Using linearly polarized laser pulses, cylindrically asymmetric shock waves were produced, leading to novel non-symmetric target shapes, the asymmetry of which was studied as a function of laser pulse parameters and droplet size. A good qualitative agreement was obtained between smoothed-particle hydrodynamics simulations and high-resolution stroboscopic experimental data of the droplet deformation dynamics.


2017 ◽  
Vol 31 (29) ◽  
pp. 1750215 ◽  
Author(s):  
Feras Afaneh ◽  
Horst Schmidt-Böcking

In this paper, we study single and double ionizations of N2O in a short elliptically polarized 800 nm laser pulse using the COLTRIMS technique. The molecular-frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionizations of N2O molecules are reported for the single ionization dissociative channel NO[Formula: see text] + N and the double ionization dissociative channel NO[Formula: see text] + N[Formula: see text]. The ionizations of multiple orbitals for the two studied dissociative channels were identified via studying the orientation dependent ionization rates for their KERs. The results show that the shape of the ionizing orbitals governs the single and double ionization processes of N2O.


2004 ◽  
Vol 70 (4) ◽  
Author(s):  
A. L. Landers ◽  
E. Wells ◽  
T. Osipov ◽  
K. D. Carnes ◽  
A. S. Alnaser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document