ion generation
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 24)

H-INDEX

29
(FIVE YEARS 1)

Author(s):  
Sergey Kondrashev ◽  
Edward Beebe ◽  
Takeshi Kanesue ◽  
Masahiro Okamura ◽  
Robert Scott

Abstract Picosecond lasers (ps-lasers) have significant advantages for the generation of low charge state ions compared to nanosecond lasers because the influence of heat conductivity on a solid target is almost negligible in the case of ps-laser ablation for laser pulse durations less than 10 ps. However, there is no comprehensive data on ion yields for different elements and target irradiation conditions for laser power densities at the target surface around and below 1013 W/cm2, which is of interest to our study of such plasmas as a source of low charge state ions for various applications, particularly for external injection of those ions into an Electron Beam Ion Source (EBIS). We investigated ion generation from Al, Ti, Cu, Nb and Ta target elements by a ps-laser with power densities in the range of 1011 – 1013 W/cm2 at the target surface. A ps-laser with 1.27 mJ maximum energy within an 8 ps pulse and repetition rate up to 400 Hz has been used to generate a laser-ablated plasma. Dependencies of ion current vs time, total charge of registered ions as well as ion kinetic energy distributions are characterized using a Faraday cup. Significant difference in ion current dynamics between first, second and following shots onto the same target spot was found for all five target elements. The total charge of ions registered by the Faraday cup increases linearly with increasing laser pulse energy and is almost independent of the target element and number of shots onto the same target spot for all five target elements studied. The results obtained give us a basis for specification and design of the source of low charge state ions for external injection into EBIS.


2021 ◽  
Author(s):  
Ayan Dasgupta ◽  
Rasool Babaahmadi ◽  
Sanjukta Pahar ◽  
Katarina Stefkova ◽  
Lukas Gierlichs ◽  
...  

Author(s):  
Ayan Dasgupta ◽  
Rasool Babaahmadi ◽  
Sanjukta Pahar ◽  
Katarina Stefkova ◽  
Lukas Gierlichs ◽  
...  

2021 ◽  
pp. 82-84
Author(s):  
O.O. Ivashchuk ◽  
A.V. Shchagin ◽  
A.S. Kubankin ◽  
E.V. Bolotov ◽  
V.S. Miroshnik ◽  
...  

The article is devoted to investigation of ion generation by tungsten filament in vacuum. Electron and ion currents from tungsten filament at different residual air gas pressures are measured and compared. Dependencies of ion and electron currents from tungsten filament on its supply voltage are measured. Production of ions in the vicinity of the filament is discussed. Prospects of tungsten filament’s application in pyroelectric and piezoelectric pulsed accelerators are discussed.


2021 ◽  
Author(s):  
Sergey Kondrashev ◽  
E Beebe ◽  
T Kanesue ◽  
M Okamura ◽  
R. Scott

Proceedings ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 10
Author(s):  
Yuriy Garbovskiy

Many liquid crystal devices are driven by electric fields. Ions, typically present in molecular liquid crystal materials in minute quantities, can compromise the performance of mesogenic materials (in the simplest case, through a well-known screening effect). Even highly purified liquid crystals can be contaminated with ions during their production and handling. Therefore, measurements of the concentration of ions have become an important part of the material characterization of liquid crystals. Interestingly, even a brief analysis of existing publications can reveal a quite broad variability of the values of the concentration of ions measured by different research groups for the same liquid crystals. This reflects the complexity of ion generation mechanisms in liquid crystal materials and their dependence on numerous factors. In this paper, an overview of ion generation mechanisms in liquid crystals and modern ion measurement techniques is followed by the discussion of frequently overlooked factors affecting the measured values of the ion concentration. Ion-generating and ion-capturing properties of the alignment layers (or substrates) of liquid crystal cells are considered and used to evaluate a true concentration of ions in liquid crystals. In addition, practical recommendations aimed at improving the measurements of the ion density in liquid crystals are also discussed.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
V. E. Moiseenko ◽  
Yu. V. Kovtun ◽  
T. Wauters ◽  
A. Goriaev ◽  
A. I. Lyssoivan ◽  
...  

In support of the ICRF experiments planned on the Wendelstein 7-X (W7-X) stellarator, i.e. fast ion generation, wall conditioning, target plasma production and heating, a first experimental study on plasma production has been made in the Uragan-2M (U-2M) stellarator using W7-X-like two-strap antenna. In all the experiments, antenna monopole phasing was used. The W7-X-like antenna operation with launched radiofrequency power of ~100 kW have been performed in helium (p = (4–14) × 10−2 Pa) with the vacuum vessel walls pre-loaded with hydrogen. Production of plasma with a density higher than 1012 cm−3 was observed near the first harmonic of the hydrogen cyclotron frequency. Operation at first hydrogen harmonic is feasible in W7-X future ICRF experiments.


Sign in / Sign up

Export Citation Format

Share Document