momentum distribution
Recently Published Documents


TOTAL DOCUMENTS

1190
(FIVE YEARS 107)

H-INDEX

65
(FIVE YEARS 6)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Li-Li Li ◽  
Fu-Hu Liu ◽  
Muhammad Waqas ◽  
Muhammad Ajaz

We analyzed the transverse momentum spectra of positively and negatively charged pions (π+ and π−), positively and negatively charged kaons (K+ and K−), protons and antiprotons (p and p¯), as well as ϕ produced in mid-(pseudo)rapidity region in central nucleus–nucleus (AA) collisions over a center-of-mass energy range from 2.16 to 2760 GeV per nucleon pair. The transverse momentum of the considered particle is regarded as the joint contribution of two participant partons which obey the modified Tsallis-like transverse momentum distribution and have random azimuths in superposition. The calculation of transverse momentum distribution of particles is performed by the Monte Carlo method and compared with the experimental data measured by international collaborations. The excitation functions of effective temperature and other parameters are obtained in the considered energy range. With the increase of collision energy, the effective temperature parameter increases quickly and then slowly. The boundary appears at around 5 GeV, which means the change of reaction mechanism and/or generated matter.


Author(s):  
Yahya Younesizadeh ◽  
Fayzollah Younesizadeh

In this work, we study the differential scattering cross-section (DSCS) in the first-order Born approximation. It is not difficult to show that the DSCS can be simplified in terms of the system response function. Also, the system response function has this property to be written in terms of the spectral function and the momentum distribution function in the impulse approximation (IA) scheme. Therefore, the DSCS in the IA scheme can be formulated in terms of the spectral function and the momentum distribution function. On the other hand, the DSCS for an electron off the [Formula: see text] and [Formula: see text] nuclei is calculated in the harmonic oscillator shell model. The obtained results are compared with the experimental data, too. The most important result derived from this study is that the calculated DSCS in terms of the spectral function has a high agreement with the experimental data at the low-energy transfer, while the obtained DSCS in terms of the momentum distribution function does not. Therefore, we conclude that the response of a many-fermion system to a probe particle in IA must be written in terms of the spectral function for getting accurate theoretical results in the field of collision. This is another important result of our study.


2021 ◽  
Author(s):  
Hao Zhu ◽  
Shou-Gen Yin ◽  
Wu-Ming Liu

Abstract We investigate the anisotropic spin-orbit coupled spin-2 Bose-Einstein condensates with Ioffe-Pritchard magnetic field. With nonzero magnetic field, anisotropic spin-orbit coupling will introduce several vortices and further generate a vortex chain. Inside the vortex chain, vortices connect to each other, forming a line along the axis. The physical nature of the vortex chain can be explained by the particle current and the momentum distribution. The vortex number inside the vortex chain can be influenced via varying the magnetic field. Through adjusting the anisotropy of the spin-orbit coupling, the direction of the vortex chain is changed, and the vortex lattice can be triggered. Moreover, accompanied by the variation of the atomic interactions, the density and the momentum distribution of the vortex chain are affected. The realization and the detection of the vortex chain are compatible with current experimental techniques.


ACS Nano ◽  
2021 ◽  
Author(s):  
Michael Hartelt ◽  
Pavel N. Terekhin ◽  
Tobias Eul ◽  
Anna-Katharina Mahro ◽  
Benjamin Frisch ◽  
...  

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Tobias Dornheim ◽  
Jan Vorberger ◽  
Burkhard Militzer ◽  
Zhandos A. Moldabekov

Author(s):  
Juan Polo ◽  
Piero Naldesi ◽  
Anna Minguzzi ◽  
Luigi Amico

Abstract We study a quantum many-body system of attracting bosons confined in a ring-shaped potential and interrupted by a weak link. With such architecture, the system defines atomtronic quantum interference devices harnessing quantum solitonic currents. We demonstrate that the system is characterized by the specific interplay between the interaction and the strength of the weak link. In particular, we find that, depending on the operating conditions, the current can be a universal function of the relative size between the strength of the impurity and interaction. The low lying many-body states are studied through a quench dynamical protocol that is the atomtronic counterpart of Rabi interferometry. With this approach, we demonstrate how our system defines a two level system of coupled solitonic currents. The current states are addressed through the analysis of the momentum distribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. A. Ivanov ◽  
Anatoli S. Kheifets ◽  
Kyung Taec Kim

AbstractWe study propagation effects due to the finite speed of light in ionization of extended molecular systems. We present a general quantitative theory of these effects and show under which conditions such effects should appear. The finite speed of light propagation effects are encoded in the non-dipole terms of the time-dependent Shrödinger equation and display themselves in the photoelectron momentum distribution projected on the molecular axis. Our numerical modeling for the $$\hbox {H}_{2}^{+}$$ H 2 + molecular ion and the $$\hbox {Ne}_2$$ Ne 2 dimer shows that the finite light propagation time from one atomic center to another can be accurately determined in a table top laser experiment which is much more readily accessible than the ground breaking synchrotron measurement by Grundmann et al. (Science 370:339, 2020).


2021 ◽  
Vol 75 (10) ◽  
Author(s):  
Bernd Konrad ◽  
Fabio Di Pumpo ◽  
Matthias Freyberger

Abstract  An early approach to include pointers representing measurement devices into quantum mechanics was given by von Neumann. Based on this idea, we model such pointers by qubits and couple them to a free particle, in analogy to a classical time-of-flight arrangement. The corresponding Heisenberg dynamics leads to pointer observables whose expectation values allow us to reconstruct the particle’s momentum distribution via the characteristic function. We investigate different initial qubit states and find that such a reconstruction can be considerably simplified by initially entangled pointers. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document