An iterated parametric approach to nonstationary signal extraction

2006 ◽  
Vol 50 (9) ◽  
pp. 2206-2231 ◽  
Author(s):  
Tucker McElroy ◽  
Andrew Sutcliffe
2021 ◽  
Author(s):  
Shuangchao Ge ◽  
Shida Zhou

Abstract For nonstationary time series i.e. natural electromagnetic field and acoustical signal, effective signal extraction always requires prior knowledge or hypothesis, and hardly do without artificial judgment. We proposed bat algorithm sparse decomposition (BASD) to realize adaptive recognition and extraction of nonstationary signal in a noisy background. We designed two general atomics for typical signals, and developed dictionary training method based on correlation detection and Hilbert transform. The sparse decomposition was turned into an optimizing problem by introducing bat algorithm with optimized fitness function. By contrast with variational modal decomposition, it was indicated that BASD can effectively extract short time target without inducing global aliasing of local feature, and no preset mode number and late screening were needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuang-chao Ge ◽  
Shida Zhou

AbstractSparse decomposition technique is a new method for nonstationary signal extraction in a noise background. To solve the problem of accuracy and efficiency exclusive in sparse decomposition, the bat algorithm combined with Orthogonal Matching Pursuits (BatOMP) was proposed to improve sparse decomposition, which can realize adaptive recognition and extraction of nonstationary signal containing random noise. Two general atoms were designed for typical signals, and dictionary training method based on correlation detection and Hilbert transform was developed. The sparse decomposition was turned into an optimizing problem by introducing bat algorithm with optimized fitness function. By contrast with several relevant methods, it was indicated that BatOMP can improve convergence speed and extraction accuracy efficiently as well as decrease the hardware requirement, which is cost effective and helps broadening the applications.


Author(s):  
Dora Matzke ◽  
Conor V. Dolan ◽  
Gordon D. Logan ◽  
Scott D. Brown ◽  
Eric-Jan Wagenmakers

2017 ◽  
Vol 2017 (45) ◽  
pp. 83-89
Author(s):  
A.A. Marusenkov ◽  

Using dedicated high-frequency measuring system the distribution of the Barkhausen jumps intensity along a reversal magnetization cycle was investigated for low noise fluxgate sensors of various core shapes. It is shown that Barkhausen (reversal magnetization) noise intensity is strongly inhomogeneous during an excitation cycle. In the traditional second harmonic fluxgate magnetometers the signals are extracted in the frequency domain, as a result, some average value of reversal magnetization noises is contributed to the output signals. In order to fit better the noise shape and minimize its transfer to the magnetometer output the new approach for demodulating signals of these sensors is proposed. The new demodulating method is based on information extraction in the time domain taking into account the statistical properties of cyclic reversal magnetization noises. This approach yields considerable reduction of the fluxgate magnetometer noise in comparison with demodulation of the signal filtered at the second harmonic of the excitation frequency.


Sign in / Sign up

Export Citation Format

Share Document