Sample size estimation in cluster randomized trials: An evidence-based perspective

2012 ◽  
Vol 56 (5) ◽  
pp. 1174-1187 ◽  
Author(s):  
Michael Rotondi ◽  
Allan Donner
2019 ◽  
Author(s):  
Xiaoran Han ◽  
Jiaye Lin ◽  
Jinjing Xu ◽  
Maggie Wang ◽  
Benny Zee ◽  
...  

Abstract Background Cluster randomized trials (CRTs) are widely adopted in health and primary care research. However, the cluster effect needs to be taken into account appropriately in the design and analysis of CRTs. The objectives of this study were (i) to review the reporting of intracluster correlations in CRTs; and (ii) to evaluate whether the assumed intracluster correlation measures in sample size planning are consistent with those obtained in the analysis. Methods The Aggregate Analysis of ClinicalTrials.gov database was searched to identify CRTs registered between January 1, 2004 and March 27, 2016. The selected CRTs with accessible publications were screened according to eligibility criteria. Results Of the 281 CRTs identified, the percentage of studies accounting for cluster effect increased annually. A total of 183 studies accounted for clustering in sample size estimation, among them 43% of CRTs adopted the intraclass correlation coefficient (ICC) but the exact estimated value of ICC was provided in only 26% of the included studies. In different intervention types, there were no statistically significant differences between the assumed and reported values of ICC (all p-values >0.05). Conclusion Although the difference between the values of ICC assumed in sample size planning and that reported in the analysis was not statistically significant, deficiencies in CRTs are still common, such as low rates of considering cluster effect in sample size and reporting intracluster correlation estimates. We also suggest that researchers ought to be familiar with the properties of statistical approaches to improve the analysis of CRTs. Thus, more recommendations and guidelines such as the CONSORT statement for CRTs should be suggested to researchers.


2010 ◽  
Vol 8 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Zhiying You ◽  
O Dale Williams ◽  
Inmaculada Aban ◽  
Edmond Kato Kabagambe ◽  
Hemant K Tiwari ◽  
...  

2021 ◽  
pp. 096228022199041
Author(s):  
Fan Li ◽  
Guangyu Tong

The modified Poisson regression coupled with a robust sandwich variance has become a viable alternative to log-binomial regression for estimating the marginal relative risk in cluster randomized trials. However, a corresponding sample size formula for relative risk regression via the modified Poisson model is currently not available for cluster randomized trials. Through analytical derivations, we show that there is no loss of asymptotic efficiency for estimating the marginal relative risk via the modified Poisson regression relative to the log-binomial regression. This finding holds both under the independence working correlation and under the exchangeable working correlation provided a simple modification is used to obtain the consistent intraclass correlation coefficient estimate. Therefore, the sample size formulas developed for log-binomial regression naturally apply to the modified Poisson regression in cluster randomized trials. We further extend the sample size formulas to accommodate variable cluster sizes. An extensive Monte Carlo simulation study is carried out to validate the proposed formulas. We find that the proposed formulas have satisfactory performance across a range of cluster size variability, as long as suitable finite-sample corrections are applied to the sandwich variance estimator and the number of clusters is at least 10. Our findings also suggest that the sample size estimate under the exchangeable working correlation is more robust to cluster size variability, and recommend the use of an exchangeable working correlation over an independence working correlation for both design and analysis. The proposed sample size formulas are illustrated using the Stop Colorectal Cancer (STOP CRC) trial.


2014 ◽  
Vol 33 (15) ◽  
pp. 2538-2553 ◽  
Author(s):  
Md. Abu Manju ◽  
Math J. J. M. Candel ◽  
Martijn P. F. Berger

2014 ◽  
Vol 11 (3) ◽  
pp. 309-318 ◽  
Author(s):  
Rui Wang ◽  
Ravi Goyal ◽  
Quanhong Lei ◽  
M Essex ◽  
Victor De Gruttola

Sign in / Sign up

Export Citation Format

Share Document