scholarly journals Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example

2018 ◽  
Vol 122 ◽  
pp. 135-155 ◽  
Author(s):  
Sebastian J. Teran Hidalgo ◽  
Michael C. Wu ◽  
Stephanie M. Engel ◽  
Michael R. Kosorok
2009 ◽  
Vol 26 (4) ◽  
pp. 1115-1179 ◽  
Author(s):  
Bin Chen ◽  
Yongmiao Hong

We develop a nonparametric regression-based goodness-of-fit test for multifactor continuous-time Markov models using the conditional characteristic function, which often has a convenient closed form or can be approximated accurately for many popular continuous-time Markov models in economics and finance. An omnibus test fully utilizes the information in the joint conditional distribution of the underlying processes and hence has power against a vast class of continuous-time alternatives in the multifactor framework. A class of easy-to-interpret diagnostic procedures is also proposed to gauge possible sources of model misspecification. All the proposed test statistics have a convenient asymptotic N(0, 1) distribution under correct model specification, and all asymptotic results allow for some data-dependent bandwidth. Simulations show that in finite samples, our tests have reasonable size, thanks to the dimension reduction in nonparametric regression, and good power against a variety of alternatives, including misspecifications in the joint dynamics, but the dynamics of each individual component is correctly specified. This feature is not attainable by some existing tests. A parametric bootstrap improves the finite-sample performance of proposed tests but with a higher computational cost.


Author(s):  
Samuel Olorunfemi Adams ◽  
Davies Abiodun Obaromi ◽  
Alumbugu Auta Irinews

We investigated the finite properties as well as the goodness of fit test for the cubic smoothing spline selection methods like the Generalized Maximum Likelihood (GML), Generalized Cross-Validation (GCV) and Mallow CP criterion (MCP) estimators for time-series observation when there is the presence of Autocorrelation in the error term of the model. The Monte-Carlo study considered 1,000 replication with six sample sizes: 30; 60; 120; 240; 480 and 960, four degree of autocorrelations; 0.1; 0.3; 0.5; and 0.9 and three smoothing parameters; lambdaGML= 0.07271685, lambdaGCV= 0.005146929, lambdaMCP= 0.7095105. The cubic smoothing spline selection methods were also applied to a real-life dataset. The Predictive mean square error, R-square, and adjusted R-square criteria for assessing finite properties and goodness of fit among competing models discovered that the performance of the estimators is affected by changes in the sample sizes and autocorrelation levels of the simulated and real-life data set. The study concluded that the Generalized Cross-Validation estimator provides a better fit for Autocorrelated time series observation. It is recommended that the GCV works well at the four autocorrelation levels and provides the best fit for time-series observations at all sample sizes considered. This study can be applied to; non –parametric regression, non –parametric forecasting, spatial, survival and econometric observations.


Sign in / Sign up

Export Citation Format

Share Document