A neural network approach for speech activity detection for Apollo corpus

2021 ◽  
Vol 65 ◽  
pp. 101137
Author(s):  
Vishala Pannala ◽  
B. Yegnanarayana
2014 ◽  
pp. 30-37
Author(s):  
Svetlana Bezobrazova ◽  
Vladimir Golovko

A goal of EEG signals analysis is not only human psychologically and functionality states definition but also pathological activity detection. In this paper we present an approach for epileptiform activity detection by artificial neural network technique for EEG signal segmentation and for the highest Lyapunov’s exponent computing. The EEG segmentation by the neural network approach makes it possible to detect an abnormal activity in signals. We examine our system for segmentation and anomaly detection on the EEG signals where the anomaly is an epileptiform activity.


2021 ◽  
pp. 1-17
Author(s):  
Sethuram V ◽  
Ande Prasad ◽  
R. Rajeswara Rao

In speech technology, a pivotal role is being played by the Speaker diarization mechanism. In general, speaker diarization is the mechanism of partitioning the input audio stream into homogeneous segments based on the identity of the speakers. The automatic transcription readability can be improved with the speaker diarization as it is good in recognizing the audio stream into the speaker turn and often provides the true speaker identity. In this research work, a novel speaker diarization approach is introduced under three major phases: Feature Extraction, Speech Activity Detection (SAD), and Speaker Segmentation and Clustering process. Initially, from the input audio stream (Telugu language) collected, the Mel Frequency Cepstral coefficient (MFCC) based features are extracted. Subsequently, in Speech Activity Detection (SAD), the music and silence signals are removed. Then, the acquired speech signals are segmented for each individual speaker. Finally, the segmented signals are subjected to the speaker clustering process, where the Optimized Convolutional Neural Network (CNN) is used. To make the clustering more appropriate, the weight and activation function of CNN are fine-tuned by a new Self Adaptive Sea Lion Algorithm (SA-SLnO). Finally, a comparative analysis is made to exhibit the superiority of the proposed speaker diarization work. Accordingly, the accuracy of the proposed method is 0.8073, which is 5.255, 2.45%, and 0.075, superior to the existing works.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


1997 ◽  
Author(s):  
Daniel Benzing ◽  
Kevin Whitaker ◽  
Dedra Moore ◽  
Daniel Benzing ◽  
Kevin Whitaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document