scholarly journals Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex

2015 ◽  
Vol 25 (11) ◽  
pp. 1496-1501 ◽  
Author(s):  
Claudia Lunghi ◽  
Uzay E. Emir ◽  
Maria Concetta Morrone ◽  
Holly Bridge
2014 ◽  
Vol 14 (10) ◽  
pp. 378-378
Author(s):  
C. Lunghi ◽  
U. Emir ◽  
M. C. Morrone ◽  
D. C. Burr ◽  
H. Bridge

2007 ◽  
Vol 104 (29) ◽  
pp. 12169-12174 ◽  
Author(s):  
B. W. Zeff ◽  
B. R. White ◽  
H. Dehghani ◽  
B. L. Schlaggar ◽  
J. P. Culver

2018 ◽  
Author(s):  
Paola Binda ◽  
Jan W. Kurzawski ◽  
Claudia Lunghi ◽  
Laura Biagi ◽  
Michela Tosetti ◽  
...  

AbstractVisual cortex, particularly V1, is considered to be resilient to plastic changes in adults. In particular, ocular dominance is assumed to be hard-wired after the end of the critical period. We show that short-term (2h) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistently with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 & V4 but absent in V3a and MT. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult.


2020 ◽  
Vol 112 ◽  
pp. 542-552 ◽  
Author(s):  
Elisa Castaldi ◽  
Claudia Lunghi ◽  
Maria Concetta Morrone

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Paola Binda ◽  
Jan W Kurzawski ◽  
Claudia Lunghi ◽  
Laura Biagi ◽  
Michela Tosetti ◽  
...  

Sensory deprivation during the post-natal ‘critical period’ leads to structural reorganization of the developing visual cortex. In adulthood, the visual cortex retains some flexibility and adapts to sensory deprivation. Here we show that short-term (2 hr) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistent with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 and V4 but absent in V3a and hMT+. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult.


2021 ◽  
Author(s):  
Jan W Kurzawski ◽  
Claudia Lunghi ◽  
Laura Biagi ◽  
Michela Tosetti ◽  
Maria Concetta Morrone ◽  
...  

While there is evidence that the visual cortex retains a potential for plasticity in adulthood, less is known about the subcortical stages of visual processing. Here we asked whether short-term ocular dominance plasticity affects the visual thalamus. We addressed this question in normally sighted adult humans, using ultra-high field (7T) magnetic resonance imaging combined with the paradigm of short-term monocular deprivation. With this approach, we previously demonstrated transient shifts of perceptual eye dominance and ocular dominance in visual cortex (Binda et al., 2018). Here we report evidence for short-term plasticity in the ventral division of the pulvinar (vPulv), where the deprived eye representation was enhanced over the non-deprived eye. This pulvinar plasticity effect was similar as previously seen in visual cortex and it was correlated with the ocular dominance shift measured behaviorally. In contrast, there was no short-term plasticity effect in Lateral Geniculate Nucleus (LGN), where results were reliably different from vPulv, despite their spatial proximity. We conclude that the visual thalamus retains potential for short-term plasticity in adulthood; the plasticity effect differs across thalamic subregions, possibly reflecting differences in their cortical connectivity.


2020 ◽  
Vol 117 (20) ◽  
pp. 11059-11067
Author(s):  
Yaseen A. Jamal ◽  
Daniel D. Dilks

Can the primary visual cortex (V1), once wired up in development, change in adulthood? Although numerous studies have demonstrated topographic reorganization in adult V1 following the loss of bottom-up input, others have challenged such findings, offering alternative explanations. Here we use a noninvasive and reversible deprivation paradigm and converging neural and behavioral approaches to address these alternatives in the experimental test case of short-term topographic reorganization in adult human V1. Specifically, we patched one eye in typical adults, thereby depriving the cortical representation of the other eye’s blind spot (BS), and immediately tested for topographic reorganization using functional magnetic resonance imaging and psychophysics. Strikingly, within just minutes of eye-patching, the BS representation in V1 began responding to stimuli presented outside of the BS, and these same stimuli were perceived as elongated toward the BS. Thus, we provide converging neural and behavioral evidence of rapid topographic reorganization in adult human V1, and the strongest evidence yet that visual deprivation produces bona fide cortical change.


Sign in / Sign up

Export Citation Format

Share Document