ventral pathway
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 15 ◽  
Author(s):  
He Chen ◽  
Yuji Naya

Recent work has shown that the medial temporal lobe (MTL), including the hippocampus (HPC) and its surrounding limbic cortices, plays a role in scene perception in addition to episodic memory. The two basic factors of scene perception are the object (“what”) and location (“where”). In this review, we first summarize the anatomical knowledge related to visual inputs to the MTL and physiological studies examining object-related information processed along the ventral pathway briefly. Thereafter, we discuss the space-related information, the processing of which was unclear, presumably because of its multiple aspects and a lack of appropriate task paradigm in contrast to object-related information. Based on recent electrophysiological studies using non-human primates and the existing literature, we proposed the “reunification theory,” which explains brain mechanisms which construct object-location signals at each gaze. In this reunification theory, the ventral pathway signals a large-scale background image of the retina at each gaze position. This view-center background signal reflects the first person’s perspective and specifies the allocentric location in the environment by similarity matching between images. The spatially invariant object signal and view-center background signal, both of which are derived from the same retinal image, are integrated again (i.e., reunification) along the ventral pathway-MTL stream, particularly in the perirhinal cortex. The conjunctive signal, which represents a particular object at a particular location, may play a role in scene perception in the HPC as a key constituent element of an entire scene.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chia-Ho Lai ◽  
Shu-Kai Hsieh ◽  
Chia-Lin Lee ◽  
Lily I-Wen Su ◽  
Te-Hsin Liu ◽  
...  

The present study aimed to investigate the neural mechanism underlying semantic processing in Mandarin Chinese adult learners, focusing on the learners who were Indo-European language speakers with advanced levels of proficiency in Mandarin Chinese. We used functional magnetic resonance imaging technique and a semantic judgment task to test 24 Mandarin Chinese adult learners (L2 group) and 26 Mandarin Chinese adult native speakers (L1 group) as a control group. In the task, participants were asked to indicate whether two-character pairs were related in meaning. Compared to the L1 group, the L2 group had greater activation in the bilateral occipital regions, including the fusiform gyrus and middle occipital gyrus, as well as the right superior parietal lobule. On the other hand, less activation in the bilateral temporal regions was found in the L2 group relative to the L1 group. Correlation analysis further revealed that, within the L2 group, increased activation in the left middle temporal gyrus/superior temporal gyrus (M/STG, BA 21) was correlated with higher accuracy in the semantic judgment task as well as better scores in the two vocabulary tests, the Assessment of Chinese character list for grade 3 to grade 9 (A39) and the Peabody Picture Vocabulary Test-Revised. In addition, functional connectivity analysis showed that connectivity strength between the left fusiform gyrus and left ventral inferior frontal gyrus (IFG, BA 47) was modulated by the accuracy in the semantic judgment task in the L1 group. By contrast, this modulation effect was weaker in the L2 group. Taken together, our study suggests that Mandarin Chinese adult learners rely on greater recruitment of the bilateral occipital regions to process orthographic information to access the meaning of Chinese characters. Also, our correlation results provide convergent evidence that the left M/STG (BA 21) plays a crucial role in the storage of semantic knowledge for readers to access to conceptual information. Moreover, the connectivity results indicate that the left ventral pathway (left fusiform gyrus-left ventral IFG) is associated with orthographic-semantic processing in Mandarin Chinese. However, this semantic-related ventral pathway might require more time and language experience to be developed, especially for the late adult learners of Mandarin Chinese.


2021 ◽  
Author(s):  
Vladislav Ayzenberg ◽  
Marlene Behrmann

Although there is mounting evidence that input from the dorsal visual pathway is crucial for object processes in the ventral pathway, the specific functional contributions of dorsal cortex to these processes remains poorly understood. Here, we hypothesized that dorsal cortex computes the spatial relations among an object's parts — a processes crucial for forming global shape percepts — and transmits this information to the ventral pathway to support object categorization. Using multiple functional localizers, we discovered regions in the intraparietal sulcus (IPS) that were selectively involved in computing object-centered part relations. These regions exhibited task-dependent functional connectivity with ventral cortex, and were distinct from other dorsal regions, such as those representing allocentric relations, 3D shape, and tools. In a subsequent experiment, we found that the multivariate response of posterior IPS, defined on the basis of part-relations, could be used to decode object category at levels comparable to ventral object regions. Moreover, mediation and multivariate connectivity analyses further suggested that IPS may account for representations of part relations in the ventral pathway. Together, our results highlight specific contributions of the dorsal visual pathway to object recognition. We suggest that dorsal cortex is a crucial source of input to the ventral pathway and may support the ability to categorize objects on the basis of global shape.


2021 ◽  
Author(s):  
Yuening Yan ◽  
Jiayu Zhan ◽  
Robin A. A. Ince ◽  
Philippe G. Schyns

The prevalent conception of vision-for-categorization suggests an interplay of two dynamic flows of information within the occipito-ventral pathway. The bottom-up flow progressively reduces the high-dimensional input into a lower-dimensional representation that is compared with memory to produce categorization behavior. The top-down flow predicts category information (i.e. features) from memory that propagates down the same hierarchy to facilitate input processing and behavior. However, the neural mechanisms that support such dynamic feature propagation up and down the visual hierarchy and how they facilitate behavior remain unclear. Here, we studied them using a prediction experiment that cued participants (N = 11) to the spatial location (left vs. right) and spatial frequency (SF, Low, LSF, vs. High, HSF) contents of an upcoming Gabor patch. Using concurrent MEG recordings of each participant's neural activity, we compared the top-down flow of representation of the predicted Gabor contents (i.e. left vs. right; LSF vs. HSF) to their bottom-up flow. We show (1) that top-down prediction improves speed of categorization in all participants, (2) the top-down flow of prediction reverses the bottom-up representation of the Gabor stimuli, going from deep right fusiform gyrus sources down to occipital cortex sources contra-lateral to the expected Gabor location and (3) that predicted Gabors are better represented when the stimulus is eventually shown, leading to faster categorizations. Our results therefore trace the dynamic top-down flow of a predicted visual content that chronologically and hierarchically reversed bottom-up processing, further facilitates visual representations in early visual cortex and subsequent categorization behavior.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ippei Negishi ◽  
Keizo Shinomori

The results of psychophysical studies suggest that color in a visual scene affects luminance contrast perception. In our brain imaging studies we have found evidence of an effect of chromatic information on luminance information. The dependency of saturation on brain activity in the visual cortices was measured by functional magnetic resonance imaging (fMRI) while the subjects were observing visual stimuli consisting of colored patches of various hues manipulated in saturation (Chroma value in the Munsell color system) on an achromatic background. The results indicate that the patches suppressed luminance driven brain activity. Furthermore, the suppression was stronger rather than weaker for patches with lower saturation colors, although suppression was absent when gray patches were presented instead of colored patches. We also measured brain activity while the subjects observed only the patches (on a uniformly black background) and confirmed that the colored patches alone did not give rise to differences in brain activity for different Chroma values. The chromatic information affects the luminance information in V1, since the effect was observed in early visual cortices (V2 and V3) and the ventral pathway (hV4), as well as in the dorsal pathway (V3A/B). In addition, we conducted a psychophysical experiment in which the ability to discriminate luminance contrast on a grating was measured. Discrimination was worse when weak (less saturated) colored patches were attached to the grating than when strong (saturated) colored patches or achromatic patches were attached. The results of both the fMRI and psychophysical experiments were consistent in that the effects of color were greater in the conditions with low saturation colors.


2021 ◽  
Vol 10 ◽  
pp. 42-50
Author(s):  
Ehsan Shekari ◽  
Sepideh Goudarzi ◽  
Elahe Shahriari ◽  
Mohammad Taghi Joghataei
Keyword(s):  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rundong Jiang ◽  
Ian Max Andolina ◽  
Ming Li ◽  
Shiming Tang

The ventral visual pathway is crucially involved in integrating low-level visual features into complex representations for objects and scenes. At an intermediate stage of the ventral visual pathway, V4 plays a crucial role in supporting this transformation. Many V4 neurons are selective for shape segments like curves and corners, however it remains unclear whether these neurons are organized into clustered functional domains, a structural motif common across other visual cortices. Using two-photon calcium imaging in awake macaques, we confirmed and localized cortical domains selective for curves or corners in V4. Single-cell resolution imaging confirmed that curve or corner selective neurons were spatially clustered into such domains. When tested with hexagonal-segment stimuli, we find that stimulus smoothness is the cardinal difference between curve and corner selectivity in V4. Combining cortical population responses with single neuron analysis, our results reveal that curves and corners are encoded by neurons clustered into functional domains in V4. This functionally-specific population architecture bridges the gap between the early and late cortices of the ventral pathway and may serve to facilitate complex object recognition.


2021 ◽  
Author(s):  
Zoha Ahmad ◽  
Marlene Behrmann ◽  
Christina M Patterson ◽  
Erez Freud

The human cortical visual system consists of two major pathways, a ventral pathway that subserves perception and a dorsal pathway that subserves visuomotor control. These pathways follow dissociable developmental trajectories, and, accordingly, might be differentially susceptible to neurodevelopmental disorders or injuries. Previous studies have found that children with cortical resections of the ventral visual pathway retain largely normal visuoperceptual abilities. Whether visually guided actions, supported by computations carried out by the dorsal pathway, follow a similar pattern remains unknown. To address this question, we examined visuoperceptual and visuomotor behaviors in a pediatric patient, TC, who underwent a cortical resection that included portions of the left ventral and dorsal pathways. We collected data when TC used her right and left hands to perceptually estimate the width blocks that varied in width and length, and, separately, to grasp the same blocks. Her perceptual estimation performance was comparable to that of controls, independent of the hand used. In contrast, relative to controls, she showed reduced visuomotor sensitivity to object shape and this was more evident when she grasped the objects with her contralesional right hand. These results provide evidence for a striking difference in the reorganization profiles of the two visual pathways. This difference supports the notion that the two pathways exhibit differential susceptibility to neurodevelopmental disorders.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ariane Martinez Oeckel ◽  
Michel Rijntjes ◽  
Volkmar Glauche ◽  
Dorothee Kümmerer ◽  
Christoph P Kaller ◽  
...  

Abstract We present anatomy-based symptom-lesion mapping to assess the association between lesions of tracts in the extreme capsule and aphasia. The study cohort consisted of 123 patients with acute left-hemispheric stroke without a lesion of language-related cortical areas of the Stanford atlas of functional regions of interest. On templates generated through global fibre tractography, lesions of the extreme capsule and of the arcuate fascicle were quantified and correlated with the occurrence of aphasia (n = 18) as defined by the Token Test. More than 15% damage of the slice plane through the extreme capsule was a strong independent predictor of aphasia in stroke patients, odds ratio 16.37, 95% confidence interval: 3.11–86.16, P < 0.01. In contrast, stroke lesions of >15% in the arcuate fascicle were not associated with aphasia. Our results support the relevance of a ventral pathway in the language network running through the extreme capsule.


NeuroImage ◽  
2021 ◽  
pp. 117977
Author(s):  
Cornelius Weiller ◽  
Marco Reisert ◽  
Ivo Peto ◽  
Jürgen Hennig ◽  
Nikos Makris ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document