plasticity effect
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4422
Author(s):  
Matija Lovšin ◽  
Dominik Brandl ◽  
Gašper Glavan ◽  
Inna A. Belyaeva ◽  
Luka Cmok ◽  
...  

A surface relief grating with a period of 30 µm is embossed onto the surface of magnetoactive elastomer (MAE) samples in the presence of a moderate magnetic field of about 180 mT. The grating, which is represented as a set of parallel stripes with two different amplitude reflectivity coefficients, is detected via diffraction of a laser beam in the reflection configuration. Due to the magnetic-field-induced plasticity effect, the grating persists on the MAE surface for at least 90 h if the magnetic field remains present. When the magnetic field is removed, the diffraction efficiency vanishes in a few minutes. The described effect is much more pronounced in MAE samples with larger content of iron filler (80 wt%) than in the samples with lower content of iron filler (70 wt%). A simple theoretical model is proposed to describe the observed dependence of the diffraction efficiency on the applied magnetic field. Possible applications of MAEs as magnetically reconfigurable diffractive optical elements are discussed. It is proposed that the described experimental method can be used as a convenient tool for investigations of the dynamics of magnetically induced plasticity of MAEs on the micrometer scale.


2021 ◽  
Author(s):  
Jan W Kurzawski ◽  
Claudia Lunghi ◽  
Laura Biagi ◽  
Michela Tosetti ◽  
Maria Concetta Morrone ◽  
...  

While there is evidence that the visual cortex retains a potential for plasticity in adulthood, less is known about the subcortical stages of visual processing. Here we asked whether short-term ocular dominance plasticity affects the visual thalamus. We addressed this question in normally sighted adult humans, using ultra-high field (7T) magnetic resonance imaging combined with the paradigm of short-term monocular deprivation. With this approach, we previously demonstrated transient shifts of perceptual eye dominance and ocular dominance in visual cortex (Binda et al., 2018). Here we report evidence for short-term plasticity in the ventral division of the pulvinar (vPulv), where the deprived eye representation was enhanced over the non-deprived eye. This pulvinar plasticity effect was similar as previously seen in visual cortex and it was correlated with the ocular dominance shift measured behaviorally. In contrast, there was no short-term plasticity effect in Lateral Geniculate Nucleus (LGN), where results were reliably different from vPulv, despite their spatial proximity. We conclude that the visual thalamus retains potential for short-term plasticity in adulthood; the plasticity effect differs across thalamic subregions, possibly reflecting differences in their cortical connectivity.


Author(s):  
Xianbing Zhang ◽  
Weilin Wang ◽  
Jian Sun ◽  
Yipeng Gao ◽  
Stephen J. Pennycook

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Clara Le Fèvre ◽  
Xue Cheng ◽  
Marie-Pierre Loit ◽  
Audrey Keller ◽  
Hélène Cebula ◽  
...  

Abstract Background The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma. Methods All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy. Results Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall. Conclusions There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved. Trial registration Retrospectively registered.


2021 ◽  
Author(s):  
Clara Le Fèvre ◽  
Xue Cheng ◽  
Marie-Pierre Loit ◽  
Audrey Keller ◽  
Hélène Cebula ◽  
...  

Abstract Background The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma.Methods All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy.Results Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall.Conclusions There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved.Trial registration: Retrospectively registered.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Adriana Eres-Castellanos ◽  
Carlos Garcia-Mateo ◽  
Francisca G. Caballero

Displacive stress and strain induced transformations are those transformations that occur when the formation of martensite or bainitic ferrite is promoted by the application of stress or strain. These transformations have been shown to be one of the mechanisms by which the mechanical properties of a microstructure can be improved, as they lead to a better ductility and strength by the transformation induced plasticity effect. This review aims to summarize the fundamental knowledge about them, both in fully austenitic or in multiphase structures, pointing out the issues that—according to the authors’ opinion—need further research. Knowing the mechanisms that govern the stress and strain induced transformation could enable to optimize the thermomechanical treatments and improve the final microstructure properties.


Author(s):  
Eric Feulvarch ◽  
Rémi Lacroix ◽  
Komlanvi Madou ◽  
Hubert Deschanels ◽  
Moïse Pignol

2020 ◽  
Vol 92 (1) ◽  
pp. 2000260
Author(s):  
Iurii Korobeinikov ◽  
Nourdine Chikhi ◽  
Pascal Fouquart ◽  
Benjamin Turquais ◽  
Jules Delacroix ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document