Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number

2021 ◽  
Vol 304 ◽  
pp. 153-163
Author(s):  
Sergio Bermudo ◽  
Magda Dettlaff ◽  
Magdalena Lemańska
2017 ◽  
Vol 152 (3) ◽  
pp. 273-287
Author(s):  
Magdalena Lemańska ◽  
Juan Alberto Rodríguez-Velázquez ◽  
Rolando Trujillo-Rasua

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1036
Author(s):  
Abel Cabrera Martínez ◽  
Alejandro Estrada-Moreno ◽  
Juan Alberto Rodríguez-Velázquez

This paper is devoted to the study of the quasi-total strong differential of a graph, and it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of Symmetry. Given a vertex x∈V(G) of a graph G, the neighbourhood of x is denoted by N(x). The neighbourhood of a set X⊆V(G) is defined to be N(X)=⋃x∈XN(x), while the external neighbourhood of X is defined to be Ne(X)=N(X)∖X. Now, for every set X⊆V(G) and every vertex x∈X, the external private neighbourhood of x with respect to X is defined as the set Pe(x,X)={y∈V(G)∖X:N(y)∩X={x}}. Let Xw={x∈X:Pe(x,X)≠⌀}. The strong differential of X is defined to be ∂s(X)=|Ne(X)|−|Xw|, while the quasi-total strong differential of G is defined to be ∂s*(G)=max{∂s(X):X⊆V(G)andXw⊆N(X)}. We show that the quasi-total strong differential is closely related to several graph parameters, including the domination number, the total domination number, the 2-domination number, the vertex cover number, the semitotal domination number, the strong differential, and the quasi-total Italian domination number. As a consequence of the study, we show that the problem of finding the quasi-total strong differential of a graph is NP-hard.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


2018 ◽  
Vol 236 ◽  
pp. 415-421 ◽  
Author(s):  
Erfang Shan ◽  
Yanxia Dong ◽  
Liying Kang ◽  
Shan Li

Sign in / Sign up

Export Citation Format

Share Document