scholarly journals Uncertainties in the Galactic Dark Matter distribution: An update

2021 ◽  
Vol 32 ◽  
pp. 100826
Author(s):  
María Benito ◽  
Fabio Iocco ◽  
Alessandro Cuoco
2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


2018 ◽  
Vol 98 (8) ◽  
Author(s):  
Disrael Camargo Neves da Cunha ◽  
Joachim Harnois-Deraps ◽  
Robert Brandenberger ◽  
Adam Amara ◽  
Alexandre Refregier

2004 ◽  
Vol 604 (1) ◽  
pp. 88-107 ◽  
Author(s):  
David J. Sand ◽  
Tommaso Treu ◽  
Graham P. Smith ◽  
Richard S. Ellis

2016 ◽  
Vol 94 (12) ◽  
Author(s):  
V. Gammaldi ◽  
V. Avila-Reese ◽  
O. Valenzuela ◽  
A. X. Gonzalez-Morales

2020 ◽  
Vol 495 (4) ◽  
pp. 3722-3726
Author(s):  
Ilia Kalashnikov

ABSTRACT This paper presents a new method of calculating dark matter density profiles for superthin axial symmetric galaxies without a bulge. This method is based on a simple physical model, which includes an infinitely thin galactic disc immersed in a spherically symmetric halo of dark matter. To obtain the desired distribution density, it suffices to know a distribution of visible matter surface density in a galaxy and a dependence of angular velocity on the radius. As a byproduct, the well-known expression, which reproduces surface density of a superthin galaxy expressed through a rotation law, was obtained.


Sign in / Sign up

Export Citation Format

Share Document