scholarly journals DARK MATTER DYNAMICS AND INDIRECT DETECTION

2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.

2011 ◽  
Vol 20 (2) ◽  
Author(s):  
T. Sepp ◽  
E. Tempel ◽  
M. Gramann ◽  
P. Nurmi ◽  
M. Haupt

AbstractThe SDSS galaxy catalog is one of the best databases for galaxy distribution studies. The SDSS DR8 data is used to construct the galaxy cluster catalog. We construct the clusters from the calculated luminosity density field and identify denser regions. Around these peak regions we construct galaxy clusters. Another interesting question in cosmology is how observable galaxy structures are connected to underlying dark matter distribution. To study this we compare the SDSS DR7 galaxy group catalog with galaxy groups obtained from the semi-analytical Millennium N-Body simulation. Specifically, we compare the group richness, virial radius, maximum separation and velocity dispersion distributions and find a relatively good agreement between the mock catalog and observations. This strongly supports the idea that the dark matter distribution and galaxies in the semi-analytical models and observations are very closely linked.


2020 ◽  
Vol 639 ◽  
pp. A125
Author(s):  
Alberto Manjón-García ◽  
Jose M. Diego ◽  
Diego Herranz ◽  
Daniel Lam

We performed a free-form strong lensing analysis of the galaxy cluster MACS J1206.2−0847 in order to estimate and constrain its inner dark matter distribution. The free-form method estimates the cluster total mass distribution without using any prior information about the underlying mass. We used 97 multiple lensed images belonging to 27 background sources and derived several models, which are consistent with the data. Among these models, we focus on those that better reproduce the radial images that are closest to the centre of the cluster. These radial images are the best probes of the dark matter distribution in the central region and constrain the mass distribution down to distances ∼7 kpc from the centre. We find that the morphology of the innermost radial arcs is due to the elongated morphology of the dark matter halo. We estimate the stellar mass contribution of the brightest cluster galaxy and subtracted it from the total mass in order to quantify the amount of dark matter in the central region. We fitted the derived dark matter density profile with a gNFW, which is characterised by rs = 167 kpc, ρs = 6.7 × 106 M⊙ kpc−3, and γgNFW = 0.70. These results are consistent with a dynamically relaxed cluster. This inner slope is smaller than the cannonical γ = 1 predicted by standard CDM models. This slope does not favour self-interacting models for which a shallower slope would be expected.


2016 ◽  
Vol 25 (07) ◽  
pp. 1630018
Author(s):  
Rita Bernabei

Nearly a century of experimental observations and theoretical arguments have pointed out that a large fraction of the Universe is composed by dark matter particles. Many possibilities are open on the nature and interaction types of such relic particles. Moreover, the poor knowledge of many fundamental astrophysical, nuclear and particle physics aspects as well as of some experimental and theoretical parameters, the different used approaches and target materials, etc. make it challenging to understand the implication of some different experimental efforts. Some general arguments are addressed here. Future perspectives are mentioned.


2009 ◽  
Vol 395 (2) ◽  
pp. 797-811 ◽  
Author(s):  
Mark Vogelsberger ◽  
Amina Helmi ◽  
Volker Springel ◽  
Simon D. M. White ◽  
Jie Wang ◽  
...  

2007 ◽  
Vol 76 (6) ◽  
Author(s):  
A. F. Zakharov ◽  
A. A. Nucita ◽  
F. De Paolis ◽  
G. Ingrosso

2008 ◽  
Vol 23 (07) ◽  
pp. 457-475
Author(s):  
TAREK SAAB

It is now well established and accepted that roughly 25% of the total mass-energy density of the Universe is in the form of non-relativistic particles. That these particles, referred to as Dark Matter, have remained a mystery has served as motivation for the design and implementation of increasingly ingenious and far reaching experiments in an attempt to identify and understand them. This paper will review various ongoing Dark Matter searches with focus on the variety of techniques and implementation used to both detect the rare Dark Matter interactions as well as reject the vast number of background events.


Sign in / Sign up

Export Citation Format

Share Document