The effect of preparation order on the crystal structure of yttria-stabilized tetragonal zirconia polycrystal and the shear bond strength of dental resin cements

2011 ◽  
Vol 27 (7) ◽  
pp. 651-663 ◽  
Author(s):  
Ji-eun Moon ◽  
Sung-hun Kim ◽  
Jai-bong Lee ◽  
Seung-ryong Ha ◽  
Yu-sung Choi
2014 ◽  
Vol 39 (3) ◽  
pp. 291-300 ◽  
Author(s):  
MA Bottino ◽  
C Bergoli ◽  
EG Lima ◽  
SMS Marocho ◽  
RO Souza ◽  
...  

SUMMARY Purpose To evaluate the effects of two surface treatments, aging, and two resin cements on shear bond strength between dentin and yttrium-stabilized tetragonal zirconia polycrystal ceramic (Y-TZP). Materials and Methods Eighty human molars were embedded in acrylic resin and sectioned 3 mm below the occlusal plane. These teeth and 80 cylindrical Y-TZP specimens (height, 4 mm; diameter, 3.4 mm) were divided into eight groups (n=10) using the following factors: Y-TZP surface treatment (Vi: low-fusing porcelain [vitrification] + hydrofluoric acid etching + silanization or Si: tribochemical silicatization); cementation strategies (PF: Panavia or CC: Clearfil); and storage (nonaging or aging). Bonding surfaces of 40 Y-TZP specimens received Vi treatment, and the rest received Si treatment. Half of the ceramic-tooth assemblies were cemented with Panavia, the rest with Clearfil. Shear tests were executed using 0.4-mm–thick wire at 0.5 mm/min. Data were analyzed by three-way analysis of variance and Tukey test (α=0.05). Fractures were analyzed. Results Y-TZP surface treatments did not affect bond strength (p=0.762, Vi = Si), while resin cements (p<0.001, Panavia > Clearfil) and aging (p=0.006, nonaging > aging) showed a significant effect. Most failures were in adhesive at dentin-cement interfaces; no failure occurred between zirconia and cement. Conclusion When Y-TZP ceramic is bonded to dentin, the weakest interface is that between dentin and resin cement. The resin cement/Y-TZP interface was less susceptible to failures, owing to Y-TZP surface treatments.


2015 ◽  
Vol 40 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Y-A Yi ◽  
J-S Ahn ◽  
Y-J Park ◽  
S-H Jun ◽  
I-B Lee ◽  
...  

SUMMARY Purpose To evaluate the effect of zirconia primers, air-abrasion, and tribochemical surface treatment methods on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic and self-adhesive resin cement. Methods and Materials Y-TZP ceramic surfaces were ground flat with 600-grit silicon carbide paper and then divided into seven groups of 10 and treated as follows: untreated (control), Monobond Plus, Z-PRIME Plus, ESPE Sil with CoJet, air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. Self-adhesive resin cement was placed onto the treated Y-TZP specimens for each group. All specimens were thermocycled and subjected to a shear bond strength test. Scanning electron microscope images of the fractured areas and x-ray diffraction (XRD) analysis of the surface-treated Y-TZP specimens were performed. Data were statistically analyzed using one-way analysis of variance and the Student-Newman-Keuls multiple comparison test (p<0.05). Results The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength (16.50±2.26 MPa), followed by air-abrasion (10.56±3.32 MPa), and then Monobond Plus combined with air-abrasion (8.93±3.13 MPa), ESPE Sil after CoJet application (8.54±3.98 MPa), and the Z-PRIME Plus group (8.27±2.79 MPa). The control (3.91±0.72 MPa) and Monobond Plus (4.86±1.77 MPa) groups indicated the lowest results (p<0.05). The XRD results showed the peaks of the monoclinic phase for the air-abrasion and CoJet treatment groups compared with the Y-TZP control. Conclusion Z-PRIME Plus primer application after air-abrasion presented the best results for improving the bond strength between Y-TZP ceramic and self-adhesive resin cement.


2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Alecsandro de Moura Silva ◽  
Viviane Maria Gonçalves de Figueiredo ◽  
Marcos Massi ◽  
Renata Falchete do Prado ◽  
Argemiro Soares da Silva Sobrinho ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yongsang Lee ◽  
Kyung Chul Oh ◽  
Na-Hong Kim ◽  
Hong-Seok Moon

The present study was intended to investigate changes in the microstructure and phase transformation of zirconia surfaces using etching and airborne-particle abrasion (AB) and the effects of these processes on the shear bond strength of dental resin cements to zirconia. Four groups were classified according to the surface treatment as follows: etching for 15 min (ET15), etching for 30 min (ET30), AB, and etching for 15 min following AB (ABET). These groups were then classified into two subgroups (a total of 8 groups with 11 specimens/group) according to the resin cement used for bonding, namely, Rely-X U200 (3M ESPE, St. Paul, MN, USA) or Panavia F 2.0 (Kuraray, Kurashiki, Okayama, Japan). Shear bond strength testing was performed using a universal testing device. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were also performed. When using Rely-X U200, ET15 exhibited the highest mean shear bond strength; the strengths of ET15, ABET, and ET30 were significantly higher than that of AB. When using Panavia F 2.0, ABET demonstrated the highest mean shear bond strength; the strengths of ABET and ET15 were significantly higher than those of ET30 and AB. The etched surface of zirconia could be observed using SEM, and the phase transformations resulting from each surface treatment were detected by XRD. Strong-acid etching of zirconia induced significant surface changes that increased the shear bond strength of resin cement, and the resin adhesive strength was higher when zirconia was etched with strong acid vs. AB alone.


Sign in / Sign up

Export Citation Format

Share Document