dental resin
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 146)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
Franziska Beck ◽  
Nicoleta Ilie

Bioactive collagen crosslinkers propose to render the dentin hybrid layer less perceptive to hydrolytic challenge. This study aims to evaluate whether bond strength of dental resin composite to dentin benefits from riboflavin (RB)-sensitized crosslinking when used in a clinically applicable protocol. A total of 300 human dentin specimens were prepared consistent with the requirements for a macro-shear bond test. RB was applied on dentin, either incorporated in the primer (RBp) of a two-step self-etch adhesive or as an aqueous solution (RBs) before applying the adhesive, and blue light from a commercial polymerization device was used for RB photoactivation. Bonding protocol executed according to the manufacturer’s information served as control. Groups (n = 20) were tested after 1 week, 1 month, 3 months, 6 months or 1 year immersion times (37 °C, distilled water). The different application methods of RB significantly influenced bond strength (p < 0.001) with a medium impact (η2p = 0.119). After 1 year immersion, post hoc analysis identified a significant advantage for RB groups compared to RBp (p = 0.018), which is attributed to a pH-/solvent-dependent efficiency of RB-sensitized crosslinking, stressing the importance of formulation adjustments. We developed an application protocol for RB-sensitized crosslinking with emphasis on clinical applicability to test its performance against a gold-standard adhesive, and are confident that, with a few adjustments to the application solution, RB-sensitized crosslinking can improve the longevity of adhesive restorations in clinics.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 425
Author(s):  
Ericles Otávio Santos ◽  
Pedro Lima Emmerich Oliveira ◽  
Thaís Pereira de Mello ◽  
André Luis Souza dos Santos ◽  
Carlos Nelson Elias ◽  
...  

The wide application of additive manufacturing in dentistry implies the further investigation into oral micro-organism adhesion and biofilm formation on vat-photopolymerization (VP) dental resins. The surface characteristics and microbiological analysis of a VP dental resin, printed at resolutions of 50 μm (EG-50) and 100 μm (EG-100), were evaluated against an auto-polymerizing acrylic resin (CG). Samples were evaluated using a scanning electron microscope, a scanning white-light interferometer, and analyzed for Candida albicans (CA) and Streptococcus mutans (SM) biofilm, as well as antifungal and antimicrobial activity. EG-50 and EG-100 exhibited more irregular surfaces and statistically higher mean (Ra) and root-mean-square (rms) roughness (EG-50-Ra: 2.96 ± 0.32 µm; rms: 4.05 ± 0.43 µm / EG-100-Ra: 3.76 ± 0.58 µm; rms: 4.79 ± 0.74 µm) compared to the CG (Ra: 0.52 ± 0.36 µm; rms: 0.84 ± 0.54 µm) (p < 0.05). The biomass and extracellular matrix production by CA and SM and the metabolic activity of SM were significantly decreased in EG-50 and EG-100 compared to CG (p < 0.05). CA and SM growth was inhibited by the pure unpolymerized VP resin (48 h). EG-50 and EG-100 recorded a greater irregularity, higher surface roughness, and decreased CA and SM biofilm formation over the CG.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 46
Author(s):  
Antonin Tichy ◽  
Marketa Simkova ◽  
Radka Vrbova ◽  
Adela Roubickova ◽  
Michaela Duskova ◽  
...  

Bisphenol A (BPA)-based monomers are commonly contained in dental resin-based materials. As BPA is an endocrine disruptor, its long-term release from restorative composites and resin-modified glass ionomers (RM-GICs) under two polymerization conditions was measured in this study. Specimens of two conventional composites containing BPA-based monomers, two “BPA-free” composites, and two RM-GICs were polymerized from one side for 20 s at 1300 mW/cm2 or for 5 s at 3000 mW/cm2. The amounts of BPA released in artificial saliva and methanol after 1, 4, 9, 16, 35, 65, 130, and 260 days were measured using liquid chromatography–tandem mass spectrometry. The highest amounts of BPA were released from conventional composites, followed by RM-GICs, while the least was released from “BPA-free” composites. Amounts of released BPA were significantly higher in methanol and decreased gradually after the first day. Fast polymerization (5 s at 3000 mW/cm2) resulted in a significantly higher release of BPA after 1 day, but the effect of polymerization conditions was not significant overall. In conclusion, fast polymerization increased the initial release of BPA, but the released amounts were significantly lower than the current tolerable daily intake (4 μg/kg body weight/day) even in methanol, representing the worst-case scenario of BPA release.


2021 ◽  
Author(s):  
Leila Marie Sears ◽  
Linfeng Wu ◽  
Brian R. Morrow ◽  
Wainscott Hollis ◽  
David R Cagna ◽  
...  
Keyword(s):  

ACS Omega ◽  
2021 ◽  
Author(s):  
Qiting Huang ◽  
Zelin Liang ◽  
Junda Li ◽  
Ying Bai ◽  
Jingwei He ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4304
Author(s):  
Shu-Fen Chuang ◽  
Chu-Chun Liao ◽  
Jui-Che Lin ◽  
Yu-Cheng Chou ◽  
Tsung-Lin Lee ◽  
...  

Blue light (BL) curing on dental resin composites results in gradient polymerization. By incorporating upconversion phosphors (UP) in resin composites, near-infrared (NIR) irradiation may activate internal blue emission and a polymerization reaction. This study was aimed to evaluate the competency of the NIR-to-BL upconversion luminance in polymerizing dental composites and to assess the appropriate UP content and curing protocol. NaYF4 (Yb3+/Tm3+ co-doped) powder exhibiting 476-nm blue emission under 980-nm NIR was adapted and ball-milled for 4–8 h to obtain different particles. The bare particles were assessed for their emission intensities, and also added into a base composite Z100 (3M EPSE) to evaluate their ability in enhancing polymerization under NIR irradiation. Experimental composites were prepared by dispensing the selected powder and Z100 at different ratios (0, 5, 10 wt% UP). These composites were irradiated under different protocols (BL, NIR, or their combinations), and the microhardness at the irradiated surface and different depths were determined. The results showed that unground UP (d50 = 1.9 μm) exhibited the highest luminescence, while the incorporation of 0.4-μm particles obtained the highest microhardness. The combined 20-s BL and 20–120-s NIR significantly increased the microhardness on the surface and internal depths compared to BL correspondents. The 5% UP effectively enhanced the microhardness under 80-s NIR irradiation but was surpassed by 10% UP with longer NIR irradiation. The combined BL-NIR curing could be an effective approach to polymerize dental composites, while the intensity of upconversion luminescence was related to specific UP particle size and content. Incorporation of 5–10% UP facilitates NIR upconversion polymerization on dental composites.


2021 ◽  
Vol 11 (24) ◽  
pp. 11676
Author(s):  
Woohyung Jang ◽  
Gyeong-Soo Kook ◽  
Jin-Ho Kang ◽  
Yeseul Kim ◽  
Yina Yun ◽  
...  

This study compared the surface roughness, contact angle, surface energy, residual monomers, degree of conversion, and flexural strength of 3D-printed dental resin under various washing conditions. The specimens were printed with a digital light processing (DLP) printer and were divided into four groups: the group dipped in IPA for 5 s (IPA-D), the group washed in IPA for 1 min (IPA-1), the group washed in IPA for 10 min (IPA-10), and the group washed with TPM for 10 min (TPM-10). Following, the groups were redivided into two groups: a cured group and an uncured group. All experimental data were statistically analyzed using one-way analysis of variance and Tukey’s test. In all groups, the surface roughness showed a value of 1.2–1.8 μm, with no significant difference (p > 0.05). Contact angle showed a significant difference between the three groups using IPA and the TPM group, whereby the TPM-washed specimen showed a low contact angle (p < 0.05). The degree of conversion (DOC) increased in the following order: IPA-D group, IPA-1 group, IPA-10 group, and TPM-10 group, exhibiting a significant difference between all groups (p < 0.05). Flexural strength was measured at 110–130 MPa in all groups, with no significant difference between groups (p > 0.05). The washing time and washing solution type of the 3D printing material had no significant effect on surface roughness and flexural strength.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kai Yu ◽  
Minting Wan ◽  
Kui Shi ◽  
Longjian Xue ◽  
Zhi Chen ◽  
...  

This study investigates the repair bond strength of aged resin composites after removing different thicknesses, determine the repair performance using the same or different resin composites and describe the treated surfaces after ageing. Seventy simulated class I cavities were prepared in extracted human third molars were randomly divided into two groups and restored with a nanofilled (Filtek Z350) or a microhybrid (Clearfil APX) composite. Five specimens without ageing in each group acted as a positive control for microtensile bond strength (MTBS) test. After thermocycling, each group was randomly divided into two subgroups: Group RT1, 1 mm removed and Group RT3, 3 mm removed, followed by roughening. Ten specimens in each subgroup were repaired with the same or different composites, and MTBS tests were conducted. The surface roughness (Sa), and water contact angle of the remaining five specimens in each subgroup were measured. In every combination group, Group RT3 showed significantly higher MTBS values than Group RT1, and identical composite was not compulsory for higher repair bond strength. Removal thickness had no significant effect on the Sa in same composite group. In both the Z350 and APX groups, the water contact angle decreased with increasing removal thickness.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4236
Author(s):  
Liliana Porojan ◽  
Roxana Diana Vasiliu ◽  
Mihaela Ionela Bîrdeanu ◽  
Sorin Daniel Porojan

Due to the little information related to surface processing and conditioning of resin matrix ceramic materials previous glazing, the main purpose of this in vitro study was to investigate the effect of different surface treatments on the surface morphology of different resin composite materials. Five types of resin composite CAD-CAM materials: a resin composite ceramic Vita Enamic (E) and four types of nanoparticle-filled resins, like Lava Ultimate (L), Cerasmart (C), Shofu HC (S), Hyramic (H) were taken into consideration. Specimens received the following surface treatment protocols: conventional polishing [p], polishing and glazing [pg], conditioning with CoJet [c], conditioning with CoJet and glazing [cg], sandblasting [s], sandblasting and glazing [sg], etching [e], etching and glazing [eg]. Surface roughness was analyzed for all samples and nanosurface topographic characterization was made by Atomic Force Microscopy. The highest roughness was registered for sandblasted surfaces [s], followed by tribochemical silica airborne particle abrasion [c], and etching [e]. A very strong correlated conditioning behavior of resin nanoceramic materials, like L, C and S samples was found. The microroughness decreased thus [s] > [c] > [e]. These are moderate correlated with H, and are moderate negative correlated to E, where e is more efficient. Three-dimensional images indicated visible grain boundaries after conditioning, for all materials. After polishing and glazing, surfaces became smoother. For all tested conditioning and finishing methods, surface roughness values were within clinically acceptable limits. Finishing by polishing was proved to be a good choice for all materials taken into consideration, polishing and glazing likewise, excepting Hyramic. For Enamic and Shofu HC sandblasting or tribochemical conditioning and glazing and for Hyramic polishing and glazing are not the best options, related to nanoroughness values. Referring to the nanosurface topography, for Enamic, Cerasmart and Hyramic, glazing would be the method of choice, associated with the adequate conditioning method for each material.


Sign in / Sign up

Export Citation Format

Share Document