scholarly journals Evaluation of Zirconia Surfaces after Strong-Acid Etching and Its Effects on the Shear Bond Strength of Dental Resin Cement

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yongsang Lee ◽  
Kyung Chul Oh ◽  
Na-Hong Kim ◽  
Hong-Seok Moon

The present study was intended to investigate changes in the microstructure and phase transformation of zirconia surfaces using etching and airborne-particle abrasion (AB) and the effects of these processes on the shear bond strength of dental resin cements to zirconia. Four groups were classified according to the surface treatment as follows: etching for 15 min (ET15), etching for 30 min (ET30), AB, and etching for 15 min following AB (ABET). These groups were then classified into two subgroups (a total of 8 groups with 11 specimens/group) according to the resin cement used for bonding, namely, Rely-X U200 (3M ESPE, St. Paul, MN, USA) or Panavia F 2.0 (Kuraray, Kurashiki, Okayama, Japan). Shear bond strength testing was performed using a universal testing device. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were also performed. When using Rely-X U200, ET15 exhibited the highest mean shear bond strength; the strengths of ET15, ABET, and ET30 were significantly higher than that of AB. When using Panavia F 2.0, ABET demonstrated the highest mean shear bond strength; the strengths of ABET and ET15 were significantly higher than those of ET30 and AB. The etched surface of zirconia could be observed using SEM, and the phase transformations resulting from each surface treatment were detected by XRD. Strong-acid etching of zirconia induced significant surface changes that increased the shear bond strength of resin cement, and the resin adhesive strength was higher when zirconia was etched with strong acid vs. AB alone.

2006 ◽  
Vol 17 (4) ◽  
pp. 290-295 ◽  
Author(s):  
Marcos Paulo Nagayassu ◽  
Luciana Keiko Shintome ◽  
Eduardo Shigueyuki Uemura ◽  
José Eduardo Junho de Araújo

The purpose of this in vitro study was to evaluate the effect of different surface treatments on the shear bond strength of a resin-based cement to porcelain. Sixty pairs of 50% aluminous porcelain discs were fabricated. In each pair, one disc measured 6 mm in diameter X 3 mm thickness (A) and the other measured 3 mm in diameter X 3mm thickness (B). The specimens were randomly assigned to 6 groups (n=10 pairs of discs), according to the surface treatment: etching with 10% hydrofluoric acid for 2 or 4min (G1 and G2); 50-µm particle aluminum oxide sandblasting for 5 s (G3); sandblasting followed by etching for 2 or 4min (G4 and G5) and control - no treatment (G6). A silane agent was applied to the treated surface of both discs of each pair. Bistite II DC dual-cure resin cement was applied and the B discs were bonded to their respective A discs. Specimens were stored in distilled water at 37ºC for 24 h and were tested in shear strength at a crosshead speed of 2 mm/min. Means in MPa were: G1: 14.21 ± 4.68; G2: 8.92 ± 3.02; G3: 10.04 ± 2.37; G4: 12.74 ± 5.15; G5: 10.99 ± 3.35; G6: 6.09 ± 1.84. Data were compared by one-way ANOVA and Tukey's test at 5% significance level. Bond strength recorded after 2-min acid etching was significantly higher than 4-min etching (p<0.05) and control (p<0.05), but did not differ significantlyfrom sandblasting alone (p>0.05) or followed by etching for 2 or 4 min (p>0.05). Within the limitations of an in vitro study, it may be concluded that 2-min hydrofluoric acid etching produced a favorable micromechanical retention that enhanced resin cement bond strength to porcelain.


Author(s):  
Ayman Mohammed Said

Purpose: To evaluate the effect of aging and different surface treatments on micro-shear bond strength of two resin cements to resin nano-ceramic composite blocks using an in-vitro study. Materials and methods: Blocks of resin nano-ceramic (Lava Ultimate, 3M, St Paul, Minnesota, USA) were used to prepare eight plates having the following dimensions: (14mm × 12mm × 2mm). After plates preparation they were assigned to two main groups according to the surface treatment applied, either hydrofluoric acid etching and silane or sandblasting and silane. Scanning electron microscope (SEM) was used to analyze the surface topography of the Lava-Ultimate plates before and after application of surface treatments. Two resin cements were used; dual cured adhesive resin cement (Bifix QM, VOCO, Cuxhafen, Germany) and dual cured self-adhesive resin cement (Bifix SE, VOCO, Cuxhafen, Germany) to create a five resin micro-cylinders received on each lava ultimate plate. Ten specimens from each subgroup were tested after 24 hours and the other ten specimens were tested after aging in saline for 6 months. Micro-shear bond strength test was applied until failure. . Multi-factorial ANOVA test and One-way ANOVA followed by pair-wise Tukey’s post-hoc tests were used to analyze the data. Results: Both resin cements showed statistically significant decrease on bond strength after aging. Before aging, both surface treatments with adhesive resin cement showed statistically significant higher micro-shear bond strength mean values than with self-adhesive resin cement. After aging sandblasting showed a statistically significant higher micro-shear bond strength mean values with adhesive resin cement, while hydrofluoric acid etching revealed a statistically non-significant higher values with adhesive resin cement than self-adhesive resin cement. Conclusion: For both surface treatments and resin cements aging had a detrimental effect on micro- shear bond strength.


2019 ◽  
Vol 18 ◽  
pp. e191581
Author(s):  
Fawaz Alqahtani ◽  
Mohammed Alkhurays

Aim: The study aimed to evaluate and compare the effect of different surface treatment and thermocycling on the shear bond strength (SBS) of different dual-/light-cure cements bonding porcelain laminate veneers (PLV). Methods: One hundred and twenty A2 shade lithium disilicate discs were divided into three groups based on the resin cement used and on the pretreatment received and then divided into two subgroups: thermocycling and control. The surface treatment were either micro-etched with aluminium trioxide and 10% hydrofluoric acid or etched with 10% hydrofluoric acid only before cementation. Three dual-cure (Variolink Esthetic (I), RelyX Ultimate (II), and RelyX Unicem (III)) and three light-cure (Variolink Veneer (IV), Variolink Esthetic (V), RelyX Veneer (VI)) resin cements were used for cementation. The SBS of the samples was evaluated and analysed using three -way ANOVA with statistical significant set at α=0.05. Results: For all resin cements tested with different surface treatments, there was a statistically significant difference within resin cements per surface treatment (p<0.05). The shear bond strength in the micro-etch group was significant higher than the acid-etch group (p<0.05) There was statistically significant interaction observed between the surface treatment and thermocycling (p<0.05) as well as the cement and thermocycling(p<0.05). It was observed that the reduction in shear bond strength after thermocycling was more pronounced in the acid etch subgroup as compared to the microetch subgroup. However, the interaction between the three factors: surface treatments, thermocycling and resin cements did not demonstrate statistically significant differences between and within groups (p=0.087). Conclusions: Within the limitations of the present study, it acan be concluded that Dual cure resin cements showed a higher Shear bond strength as compared to light cure resin cements. Thermal cycling significantly decreased the shear bond strength for both ceramic surface treatments. After thermocycling, the specimens with 10% HF surface treatment showed lower shear bond strength values when compared to those treated by sandblasting with Al2O3 particles.


2021 ◽  
Vol 12 (4) ◽  
pp. 62
Author(s):  
Tatsuya Kimura ◽  
Yujin Aoyagi ◽  
Norimasa Taka ◽  
Mitsugu Kanatani ◽  
Katsumi Uoshima

Zirconia has been used as a prosthesis material for over a decade because of its excellent mechanical properties and esthetics. The surface treatment for zirconia generally involves sandblasting and the application of primers for favorable bond strength between the surface and resin. However, sandblasting causes the microcracking and chipping of the zirconia surface. To overcome these challenges, the metallization of the zirconia surface was performed. Ti and Au were sputtered on yttria stabilized zirconia (YSZ) disks and heated to 800 °C for 15 min in air. These disks were bonded to stainless-steel rods using resin cement. Then, shear bond strength tests were performed using an Instron-type testing machine. The shear bond strength of the Ti sputtering group was significantly higher than that of the other groups. According to the results of X-ray photoelectron spectroscopy and electron probe microanalysis, the Ti-sputtered YSZ surface contained both sub-titanium oxide and titanium oxide before heating. Sub-titanium oxide was converted to titanium oxide by heating. These results suggest that metallization using Ti is effective for zirconia surface treatment to improve the shear bond strength between YSZ and resin cement. This metallization technique for YSZ has potential in clinical applications.


Author(s):  
Yeliz Hayran ◽  
Süha Kuşçu ◽  
Işıl SARIKAYA

Purpose: The aim of the study was to evaluate the shear bond strength (SBS) of different resin cements after zirconia surface treatments. Materials & Methods: A total of 60 zirconia discs (3x7mm) were prepared and divided into 3 main groups according to the surface treatments as control (C), sandblasting (SB), and tribochemical silica coating (TC). Main groups were divided into two subgroups according to two different resin cements were applied. No surface treatment was applied to the samples in C group. 50μm Al2O3 particles were applied to the samples in SB group for 10 s at a distance of 10 mm under 4 atm. TC group were tribochemically coated with alumina particles. Self-adhesive resin (ME) and multi-system dual-cure adhesive resin (NX3) was applied to the subgroups. After cementation, all samples were tested for SBS. SBS values were statistically analyzed by the Kruskal-Wallis and Mann-Whitney U tests. Results: Regardless of the cement type, SBS values of the surface treated samples were statistically different (p <0.001). Group SB was determined as the group with the highest SBS value. This group was followed by Group C and Group TC, respectively. The SBS values of the samples according to the resin cements and surface treatments were statistically significantly different (p<0.001). SBS values of the samples cemented with NX3 resin cement were found to be higher than the samples treated with ME resin cement. Conclusion: SB increased resin bond to zirconia. It is more advantageous to use multi-system dual cure adhesive cements in zirconia cementation.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3302
Author(s):  
Shifra Levartovsky ◽  
Hilla Bohbot ◽  
Keren Shem-Tov ◽  
Tamar Brosh ◽  
Raphael Pilo

The aim of the current study was to evaluate the influence of hydrofluoric (HF) acid concentration and conditioning time on the shear bond strength (SBS) of dual cure resin cement to pressed lithium disilicate ceramic compared to treatment with an Etch and Prime self-etching glass-ceramic primer (EP). A total of 100 samples of pressed lithium disilicate (IPS e.max Press, Ivoclar Vivadent) were randomly divided into five groups (n = 20) according to surface treatment: two different concentrations of HF (5% or 9%), for different durations (20 or 90 s), or treatment with EP. Adhesion of light-cured resin cement to the treated surface was tested by the SBS test. The substrate surfaces of the specimen after failures were examined by SEM. Data were analyzed using Weibull distribution. The highest cumulative failure probability of 63.2% of the shear bond strength (η parameter) values was in the 9% HF −90 s group (17.71 MPa), while the lowest values were observed in the 5% HF −20 s group (7.94 MPa). SBS values were not affected significantly by the conditioning time (20 s or 90 s). However, compared to treatment with 5% HF, surface treatment with 9% HF showed a significantly higher η (MPa) as well as β (reliability parameter). Moreover, while compared to 9% HF for 20 s, EP treatment did not differ significantly in SBS values. Examination of the failure mode revealed a mixed mode of failure in all the groups. Within the limits of this study, it is possible to assume that IPS e.max Press surface treatment with 9% HF acid for only 20 s will provide a better bonding strength with resin cement than using 5% HF acid.


Sign in / Sign up

Export Citation Format

Share Document