scholarly journals Datasets and analyses of molecular dynamics simulations of covalent binary and ternary complexes of MHC class I-related molecule/T-cell receptor (MR1/TCR) agonists to understand complex formation and conditions of fluorescent labelling

Data in Brief ◽  
2020 ◽  
pp. 106704
Author(s):  
Anke Steinmetz ◽  
Thomas Yvorra ◽  
Pascal Retailleau ◽  
Olivier Lantz ◽  
Frédéric Schmidt
2021 ◽  
Author(s):  
Prithvi R. Pandey ◽  
Bartosz Różycki ◽  
Reinhard Lipowsky ◽  
Thomas R. Weikl

AbstractWe investigate the structural and orientational variability of the membrane-embedded T cell receptor (TCR) – CD3 complex in extensive atomistic molecular dynamics simulations based on the recent cryo-EM structure determined by Dong et al. (2019). We find that the TCR extracellular (EC) domain is highly variable in its orientation by attaining tilt angles relative to the membrane normal that range from 15° to 55°. The tilt angle of the TCR EC domain is both coupled to a rotation of the domain and to characteristic changes throughout the TCR – CD3 complex, in particular in the EC interactions of the Cβ FG loop of the TCR, as well as in the orientation of transmembrane helices. The concerted motions of the membrane-embedded TCR – CD3 complex revealed in our simulations provide atomistic insights for force-based models of TCR activation, which involve such structural changes in response to tilt-inducing forces on antigen-bound TCRs.


2020 ◽  
Vol 4 (s1) ◽  
pp. 16-16
Author(s):  
Jason Devlin ◽  
Jesus Alonso ◽  
Grant Keller ◽  
Sara Bobisse ◽  
Alexandre Harari ◽  
...  

OBJECTIVES/GOALS: Neoantigen vaccine immunotherapies have shown promise in clinical trials, but identifying which peptides to include in a vaccine remains a challenge. We aim to establish that molecular structural features can help predict which neoantigens to target to achieve tumor regression. METHODS/STUDY POPULATION: Proteins were prepared by recombinant expression in E. coli followed by in vitro refolding. Correctly folded proteins were purified by chromatography. Affinities of protein-protein interactions were measured by surface plasmon resonance (SPR) and thermal stabilities of proteins were determined by differential scanning fluorimetry. All experiments were performed at least in triplicate. Protein crystals were obtained by hanging drop vapor diffusion. The protein crystal structures were solved by molecular replacement and underwent several rounds of automated refinement. Molecular dynamics simulations were performed using the AMBER molecular dynamics package. RESULTS/ANTICIPATED RESULTS: A T cell receptor (TCR) expressed by tumor-infiltrating T cells exhibited a 20-fold stronger binding affinity to the neoantigen peptide compared to the self-peptide. X-ray crystal structures of the peptides with the major histocompatibility complex (MHC) protein demonstrated that a non-mutated residue in the peptide samples different positions with the mutation. The difference in conformations of the non-mutated residue was supported by molecular dynamics simulations. Crystal structures of the TCR engaging both peptide/MHCs suggested that the conformation favored by the mutant peptide was crucial for TCR binding. The TCR bound the neoantigen/MHC with faster binding kinetics. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that the mutation impacts the conformation of another residue in the peptide, and this alteration allows for more favorable T cell receptor binding to the neoantigen. This highlights the potential of non-mutated residues in contributing to neoantigen recognition.


2015 ◽  
Vol 108 (2) ◽  
pp. 558a-559a
Author(s):  
Antreas C. Kalli ◽  
Andre Cohnen ◽  
Oreste Acuto ◽  
Mark S.P. Sansom

Nature ◽  
1994 ◽  
Vol 369 (6478) ◽  
pp. 324-327 ◽  
Author(s):  
Alpna Seth ◽  
Lawrence J. Stern ◽  
Tom H. M. Ottenhoff ◽  
Isaac Engel ◽  
Michael J. Owen ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Prithvi R Pandey ◽  
Bartosz Różycki ◽  
Reinhard Lipowsky ◽  
Thomas R Weikl

We investigate the structural and orientational variability of the membrane-embedded T cell receptor (TCR) - CD3 complex in extensive atomistic molecular dynamics simulations based on the recent cryo-EM structure determined by Dong et al. (2019). We find that the TCR extracellular (EC) domain is highly variable in its orientation by attaining tilt angles relative to the membrane normal that range from 15° to 55°. The tilt angle of the TCR EC domain is both coupled to a rotation of the domain and to characteristic changes throughout the TCR - CD3 complex, in particular in the EC interactions of the C_ FG loop of the TCR, as well as in the orientation of transmembrane helices. The concerted motions of the membrane-embedded TCR - CD3 complex revealed in our simulations provide atomistic insights on conformational changes of the complex in response to tilt-inducing forces on antigen-bound TCRs.


Sign in / Sign up

Export Citation Format

Share Document