Schurity of the wedge product of association schemes and generalized wreath product of permutation groups

2020 ◽  
Vol 343 (11) ◽  
pp. 112084
Author(s):  
Javad Bagherian
2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


2009 ◽  
Vol 30 (3) ◽  
pp. 705-715 ◽  
Author(s):  
Mikhail Muzychuk

2002 ◽  
Vol 12 (06) ◽  
pp. 849-865 ◽  
Author(s):  
EDGAR MARTÍNEZ-MORO

Association schemes are combinatorial objects that allow us solve problems in several branches of mathematics. They have been used in the study of permutation groups and graphs and also in the design of experiments, coding theory, partition designs etc. In this paper we show some techniques for computing properties of association schemes. The main framework arises from the fact that we can characterize completely the Bose–Mesner algebra in terms of a zero-dimensional ideal. A Gröbner basis of this ideal can be easily derived without the use of Buchberger algorithm in an efficient way. From this statement, some nice relations arise between the treatment of zero-dimensional ideals by reordering techniques (FGLM techniques) and some properties of the schemes such as P-polynomiality, and minimal generators of the algebra.


10.37236/942 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Eli Bagno ◽  
Ayelet Butman ◽  
David Garber

We define an excedance number for the multi-colored permutation group i.e. the wreath product $({\Bbb Z}_{r_1} \times \cdots \times {\Bbb Z}_{r_k}) \wr S_n$ and calculate its multi-distribution with some natural parameters. We also compute the multi–distribution of the parameters exc$(\pi)$ and fix$(\pi)$ over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.


Sign in / Sign up

Export Citation Format

Share Document