scholarly journals Wreath decompositions of finite permutation groups

1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.



2004 ◽  
Vol 77 (1) ◽  
pp. 55-72 ◽  
Author(s):  
Robert W. Baddeley ◽  
Cheryl E. Praeger ◽  
Csaba Schneider

AbstractA transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.



Author(s):  
Mariapia Moscatiello ◽  
Colva M. Roney-Dougal

AbstractLet G be a permutation group, acting on a set $$\varOmega $$ Ω of size n. A subset $${\mathcal {B}}$$ B of $$\varOmega $$ Ω is a base for G if the pointwise stabilizer $$G_{({\mathcal {B}})}$$ G ( B ) is trivial. Let b(G) be the minimal size of a base for G. A subgroup G of $$\mathrm {Sym}(n)$$ Sym ( n ) is large base if there exist integers m and $$r \ge 1$$ r ≥ 1 such that $${{\,\mathrm{Alt}\,}}(m)^r \unlhd G \le {{\,\mathrm{Sym}\,}}(m)\wr {{\,\mathrm{Sym}\,}}(r)$$ Alt ( m ) r ⊴ G ≤ Sym ( m ) ≀ Sym ( r ) , where the action of $${{\,\mathrm{Sym}\,}}(m)$$ Sym ( m ) is on k-element subsets of $$\{1,\dots ,m\}$$ { 1 , ⋯ , m } and the wreath product acts with product action. In this paper we prove that if G is primitive and not large base, then either G is the Mathieu group $$\mathrm {M}_{24}$$ M 24 in its natural action on 24 points, or $$b(G)\le \lceil \log n\rceil +1$$ b ( G ) ≤ ⌈ log n ⌉ + 1 . Furthermore, we show that there are infinitely many primitive groups G that are not large base for which $$b(G) > \log n + 1$$ b ( G ) > log n + 1 , so our bound is optimal.



2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.



2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.



1966 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Tosiro Tsuzuku

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that (g(i))τ=gσ(iτ) for g ∊ G and i∊Ω. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup GΔ of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of GΔ if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer Ga of a ∊ Ω, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman M).



1977 ◽  
Vol 23 (2) ◽  
pp. 202-206 ◽  
Author(s):  
David Chillag

AbstractA doubly transitive permutation group of degreep2+ 1, pa prime, is proved to be doubly primitive forp≠ 2. We also show that if such a group is not triply transitive then either it is a normal extension ofP S L(2,p2) or the stabilizer of a point is a rank 3 group.



1966 ◽  
Vol 27 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Michio Suzuki

1. When a permutation group G on a set Ω is given, a transitive extension G of G is defined to be a transitive permutation group on the set Γ which is a union of Ω and a new point ∞ such that the stabilizer of ∞ in G1 is isomorphic to G as a permutation group on Ω. The purpose of this paper is to prove that many known simple groups which can be represented as doubly transitive groups admit no transitive extension. Precise statement is found in Theorem 2. For example, the simple groups discovered by Ree [5] do not admit transitive extensions. Theorem 2 includes also a recent result of D. R. Hughes [3] which states that the unitary group U3(q) q>2 does not admit a transitive extension. As an application we prove a recent theorem of H. Nagao [4], which generalizes a theorem of Wielandt on the non-existence of 8-transitive permutation groups not containing the alternating groups under Schreier’s conjecture.



1974 ◽  
Vol 53 ◽  
pp. 103-107 ◽  
Author(s):  
Eiichi Bannai

Wagner [5] and Ito [2] proved the following theorems respectively.THEOREM OF WAGNER. Let G be a triply transitive permutation group on a set Ω = {1,2, …, n}, and let n be odd and n > 4. If H is a normal subgroup (≠1) of G, then H is also triply transitive on Ω.



10.37236/942 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Eli Bagno ◽  
Ayelet Butman ◽  
David Garber

We define an excedance number for the multi-colored permutation group i.e. the wreath product $({\Bbb Z}_{r_1} \times \cdots \times {\Bbb Z}_{r_k}) \wr S_n$ and calculate its multi-distribution with some natural parameters. We also compute the multi–distribution of the parameters exc$(\pi)$ and fix$(\pi)$ over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.



Sign in / Sign up

Export Citation Format

Share Document