Erratum to “The XRCC genes: expanding roles in DNA double-strand break repair” [DNA Repair 3 (2004) 1081–1090]

DNA Repair ◽  
2005 ◽  
Vol 4 (2) ◽  
pp. 303-304
Author(s):  
John Thacker ◽  
Małgorzata Z. Zdzienicka
Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1617
Author(s):  
Barbara N. Borsos ◽  
Hajnalka Majoros ◽  
Tibor Pankotai

The proper function of DNA repair is indispensable for eukaryotic cells since accumulation of DNA damages leads to genome instability and is a major cause of oncogenesis. Ubiquitylation and deubiquitylation play a pivotal role in the precise regulation of DNA repair pathways by coordinating the recruitment and removal of repair proteins at the damaged site. Here, we summarize the most important post-translational modifications (PTMs) involved in DNA double-strand break repair. Although we highlight the most relevant PTMs, we focus principally on ubiquitylation-related processes since these are the most robust regulatory pathways among those of DNA repair.


2008 ◽  
Vol 28 (11) ◽  
pp. 3639-3651 ◽  
Author(s):  
Yufuko Akamatsu ◽  
Yasuto Murayama ◽  
Takatomi Yamada ◽  
Tomofumi Nakazaki ◽  
Yasuhiro Tsutsui ◽  
...  

ABSTRACT The Schizosaccharomyces pombe nip1 +/ctp1 + gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.


Sign in / Sign up

Export Citation Format

Share Document