Real-time video watermarking system on the compressed domain for high-definition video contents: Practical issues

2012 ◽  
Vol 22 (1) ◽  
pp. 190-198 ◽  
Author(s):  
Min-Jeong Lee ◽  
Dong-Hyuck Im ◽  
Hae-Yeoun Lee ◽  
Kyung-Su Kim ◽  
Heung-Kyu Lee
2012 ◽  
Vol 19 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Liyun Wang ◽  
Hefei Ling ◽  
Fuhao zou ◽  
Zhengding Lu

2020 ◽  
Author(s):  
Katsuhiko Naruse ◽  
Tomoya Yamashita ◽  
Yukari Onishi ◽  
Yuhi Niitaka ◽  
Fumikage Uchida ◽  
...  

BACKGROUND A cardiotocogram (CTG) is a device used to perceive the status of a fetus in utero in real time. There are a few reports of its use at home or during emergency transport. OBJECTIVE The aim of this study was to test whether CTG and other perinatal information can be transmitted accurately using an experimental station with a 5G transmission system. METHODS In the research institute, real-time fetal heart rate waveform data from the CTG device, high-definition video ultrasound images of the fetus, and high-definition video taken with a video camera on a single line were transmitted by 5G radio waves from the transmitting station to the receiving station. RESULTS All data were proven to be transmitted with a minimum delay of less than 1 second. The CTG waveform image quality was not inferior, and there was no interruption in transmission. Images of the transmitted ultrasound examination and video movie were fine and smooth. CONCLUSIONS CTG and other information about the fetuses and pregnant women were successfully transmitted by a 5G system. This finding will lead to prompt and accurate medical treatment and improve the prognosis of newborns.


10.2196/19744 ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. e19744
Author(s):  
Katsuhiko Naruse ◽  
Tomoya Yamashita ◽  
Yukari Onishi ◽  
Yuhi Niitaka ◽  
Fumikage Uchida ◽  
...  

Background A cardiotocogram (CTG) is a device used to perceive the status of a fetus in utero in real time. There are a few reports of its use at home or during emergency transport. Objective The aim of this study was to test whether CTG and other perinatal information can be transmitted accurately using an experimental station with a 5G transmission system. Methods In the research institute, real-time fetal heart rate waveform data from the CTG device, high-definition video ultrasound images of the fetus, and high-definition video taken with a video camera on a single line were transmitted by 5G radio waves from the transmitting station to the receiving station. Results All data were proven to be transmitted with a minimum delay of less than 1 second. The CTG waveform image quality was not inferior, and there was no interruption in transmission. Images of the transmitted ultrasound examination and video movie were fine and smooth. Conclusions CTG and other information about the fetuses and pregnant women were successfully transmitted by a 5G system. This finding will lead to prompt and accurate medical treatment and improve the prognosis of newborns.


Sign in / Sign up

Export Citation Format

Share Document