Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland

2016 ◽  
Vol 64 ◽  
pp. 272-280 ◽  
Author(s):  
Xiaoan Zuo ◽  
Jing Zhang ◽  
Peng Lv ◽  
Xin Zhou ◽  
Yulin Li ◽  
...  
Ecology ◽  
2014 ◽  
Vol 95 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Paul C. Selmants ◽  
Erika S. Zavaleta ◽  
Amelia A. Wolf

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Hang Qian ◽  
Chunli Hou ◽  
Hao Liao ◽  
Li Wang ◽  
Shun Han ◽  
...  

ABSTRACT To seek how soil biotic and abiotic factors which might shape the Bdellovibrio-and-like-organisms community, we sampled paddy soils under different fertilization treatments including fertilization without nitrogen (Control), the nitrogen use treatment (N) and the nitrogen overuse one (HNK) at three rice growing stages. The abundances of BALOs were impacted by the rice-growing stages but not the fertilization treatments. The abundances of Bdellovibrionaceae-like were positively associated with soil moisture, which showed a negative relationship with Bacteriovoracaceae-like bacteria. High-throughput sequencing analysis of the whole bacterial community revealed that the α-diversity of BALOs was not correlated with any soil properties data. Network analysis detected eight families directly linked to BALOs, namely, Pseudomonadaceae, Peptostreptococcaceae, Flavobacteriaceae, Sediment-4, Verrucomicrobiaceae, OM27, Solirubrobacteraceae and Roseiflexaceae. The richness and composition of OTUs in the eight families were correlated with different soil properties, while the evenness of them had a positive effect on the predicted BALO biomass. These results highlighted that the bottom-up control of BALOs in paddy soil at least partially relied on the changes of soil water content and the diversity of bacteria directly linked to BALOs in the microbial network.


2021 ◽  
Author(s):  
Daniel McKay Flecher ◽  
Siul Ruiz ◽  
Tiago Dias ◽  
Katherine Williams ◽  
Chiara Petroselli ◽  
...  

<p>Half of the nitrogen applied to arable-fields is lost through several processes linked to soil moisture. Low soil moisture limits nitrogen mobility reducing nitrogen-uptake while wetter conditions can increase nitrogen leaching. Rainfall ultimately governs soil moisture and the fate of nitrogen in soil. However, the interaction between rainfall and nitrogen use efficiency (NUE) remains poorly understood.</p> <p>We developed a field-scale modelling platform that describes coupled water and nitrogen transport, root growth and uptake, rainfall, the nitrogen-cycle and leaching to assess the NUE of split fertilisations with realistic rainfall patterns. The model was solved for every possible split fertilisation timing in 200+ growing seasons to determine optimal timings. Two previous field trials regarding rainfall and NUE had contrasting results: wetter years have enhanced fertiliser loss and drier years reduced plant nitrogen uptake. By choosing appropriate fertilisation timings in the model we could recreate the two contrasting trends and maintain variability in the data. However, we found by choosing other fertilisation timings we could mitigate the leaching in wetter years. Optimised timings could increase plant nitrogen uptake by up to 35% compared to the mean in dry years. Plant uptake was greatest under drier conditions due to mitigated leaching, but less likely to occur due to low nitrogen mobility. Optimal fertilisation timings varied dramatically depending on the rainfall patterns. Historic and projected rainfall patterns from 1950-2069 were used in the model. We found optimal NUE has a decrease from 2022-2040 due to increased heavy rainfall events and optimal fertilisation timings are later in the season but varied largely on a season-to-season basis.</p> <p>The results are a step towards achieving improved nitrogen efficiency in agriculture by using the ‘at the right time’ agronomic-strategy in the ‘4Rs’ of improved nitrogen fertilisation. Our results can help determine nitrogen fertilisation timings in changing climates.</p>


Sign in / Sign up

Export Citation Format

Share Document