scholarly journals Designing an environmental flow framework for impounded river systems through modelling of invertebrate habitat quality

2019 ◽  
Vol 106 ◽  
pp. 105445 ◽  
Author(s):  
Ian M. Hough ◽  
Philip H. Warren ◽  
James D. Shucksmith
2021 ◽  
Author(s):  
Maria Camila Fernandez Berbeo ◽  
Nicolas Cortes Torres ◽  
Karen Ortega Tenjo ◽  
Martin Perez Pedraza ◽  
Laura Laverde Mesa ◽  
...  

<p>In Colombia around 70% of the electricity generation is from hydropower. It is documented that their infrastructure and operation rules affect the natural regime of flows and sediments with several impacts on aquatic ecosystem functioning mainly on the Magdalena-Cauca river basin, where most of the projects are located. Also, social conflicts have been documented downstream hydropower projects due to water use incompatibilities. Considering that Colombia has a great potential to expand hydropower generation as well as there is a growing demand from other water users, it is necessary to attend the ecological requirements of aquatic ecosystems and to improve the water management in order to avoid irreversible environmental impacts and governance problems.</p><p>In 2018, the Colombian Ministry of Environmental and Sustainable Development (MADS) developed a methodology to consider environmental flows both in the water management decisions and in the environmental impact assessment of new projects with impacts on hydrologic regimen. The opportunity to carry out a validation of its premises aims to research its effectiveness in terms of reduction in hydrologic alterations when environmental flow allocation is decided. </p><p>That is why we have developed a computer model (HeCCA 1.0) which contains the most important methods contemplated in the methodology proposed by MADS. Thus, using river discharge data of 15 different river systems located throughout the entire country, the methodology mentioned has been tested in basins with low anthropic alteration of the hydrological regime. In this test, we cover a range of drainage areas, from 180 to 73000 km<sup>2</sup>, located between 25 and 2993 meters above sea level, and different climatic and geomorphological characteristics. </p><p>The following results have been obtained using the HeCCA tool. For the 15 river systems, the statistical quartiles Q1, Q2 and Q3 for the percentage of use are monthly correspond to 24%, 47% and 100% respectively. The systems belong to different seasonal behaviors depending on the geographical location; nine of them count on a monomodal regimen, which average percentage of use is 61%±8, and the highest percentages of use (located in the Pacific basin) are not found during the wettest months, (77%±29); four of the watersheds are in the Orinoco basin, providing use of water between 61% and 67%. Six systems have bimodal regimen, whose average percentage of use is 49%±32, the two lowest percentages of use (14% and 19%) are found in the biggest bimodal watersheds, with sizes over 1700km<sup>2</sup>, which also have the highest average yields. The highest percentage of use found during the wettest months of the year is 99%, corresponding to the system located at one of the lowest points of the Caribbean basin.  </p><p>Thus, the percentage of available water depends on the watershed size, if it is related to the runoff seasonality along the year in the different catchment areas of the country. This approach provides stakeholders a clear overview of the water availability and management through a useful tool which improves the integral water management for hydrological systems.</p>


2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

Author(s):  
Gražina ŽIBIENĖ ◽  
Alvydas ŽIBAS ◽  
Goda BLAŽAITYTĖ

The construction of dams in rivers negatively affects ecosystems because dams violate the continuity of rivers, transform the biological and physical structure of the river channels, and the most importantly – alter the hydrological regime. The impact on the hydrology of the river can occur through reducing or increasing flows, altering seasonality of flows, changing the frequency, duration and timing of flow events, etc. In order to determine the extent of the mentioned changes, The Indicators of Hydrologic Alteration (IHA) software was used in this paper. The results showed that after the construction of Angiriai dam, such changes occurred in IHA Parameters group as: the water conditions of April month decreased by 31 %; 1-day, 3-days, 7-days and 30-days maximum flow decreased; the date of minimum flow occurred 21 days later; duration of high and low pulses and the frequency of low pulses decreased, but the frequency of high pulses increased, etc. The analysis of the Environmental Flow Components showed, that the essential differences were recorded in groups of the small and large floods, when, after the establishment of the Šušvė Reservoir, the large floods no longer took place and the probability of frequency of the small floods didn’t exceed 1 time per year.


2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


Sign in / Sign up

Export Citation Format

Share Document