flow components
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 62)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Xiaodan Zhao ◽  
Liwei Hu ◽  
Shuang Leng ◽  
Ru-San Tan ◽  
Ping Chai ◽  
...  

Abstract Background Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows quantification of biventricular blood flow by flow components and kinetic energy (KE) analyses. However, it remains unclear whether 4D flow parameters can predict cardiopulmonary exercise testing (CPET) as a clinical outcome in repaired tetralogy of Fallot (rTOF). Current study aimed to (1) compare 4D flow CMR parameters in rTOF with age- and gender-matched healthy controls, (2) investigate associations of 4D flow parameters with functional and volumetric right ventricular (RV) remodelling markers, and CPET outcome. Methods Sixty-three rTOF patients (14 paediatric, 49 adult; 30 ± 15 years; 29 M) and 63 age- and gender-matched healthy controls (14 paediatric, 49 adult; 31 ± 15 years) were prospectively recruited at four centers. All underwent cine and 4D flow CMR, and all adults performed standardized CPET same day or within one week of CMR. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes. Four flow components were analyzed: direct flow, retained inflow, delayed ejection flow and residual volume. Additionally, three phasic KE parameters normalized to end-diastolic volume (KEiEDV), were analyzed for both LV and RV: peak systolic, average systolic and peak E-wave. Results In comparisons of rTOF vs. healthy controls, median LV retained inflow (18% vs. 16%, P = 0.005) and median peak E-wave KEiEDV (34.9 µJ/ml vs. 29.2 µJ/ml, P = 0.006) were higher in rTOF; median RV direct flow was lower in rTOF (25% vs. 35%, P < 0.001); median RV delayed ejection flow (21% vs. 17%, P < 0.001) and residual volume (39% vs. 31%, P < 0.001) were both greater in rTOF. RV KEiEDV parameters were all higher in rTOF than healthy controls (all P < 0.001). On multivariate analysis, RV direct flow was an independent predictor of RV function and CPET outcome. RV direct flow and RV peak E-wave KEiEDV were independent predictors of RV remodelling index. Conclusions In this multi-scanner multicenter 4D flow CMR study, reduced RV direct flow was independently associated with RV dysfunction, remodelling and, to a lesser extent, exercise intolerance in rTOF patients. This supports its utility as an imaging parameter for monitoring disease progression and therapeutic response in rTOF. Clinical Trial Registrationhttps://www.clinicaltrials.gov. Unique identifier: NCT03217240.


2022 ◽  
Author(s):  
Timothy M. Siefers ◽  
Robert W. O'Connor ◽  
Nathan J. Thompson ◽  
Keith Bergeron

2021 ◽  
Vol 933 ◽  
Author(s):  
Marios-Andreas Nikolaidis ◽  
Petros J. Ioannou

We demonstrate that in plane Couette turbulence a separation of the velocity field in large and small scales according to a streamwise Fourier decomposition allows us to identify an active subspace comprising a small number of the gravest streamwise components of the flow that can synchronize all the remaining streamwise flow components. The critical streamwise wavelength, $\ell _{x c}$ , that separates the active from the synchronized passive subspace is identified as the streamwise wavelength at which perturbations to the time-dependent turbulent flow with streamwise wavelengths $\ell _x<\ell _{xc}$ have negative characteristic Lyapunov exponents. The critical wavelength is found to be approximately 130 wall units and obeys viscous scaling at these Reynolds numbers.


Author(s):  
Hansuk Kim ◽  
Hana Sheitt ◽  
Stephen B. Wilton ◽  
James A. White ◽  
Julio Garcia

Introduction: Four-dimensional (4-D) flow cardiac magnetic resonance imaging can be used to elegantly describe the hemodynamic efficiency of left ventricular (LV) flow throughout the cardiac cycle. Patients with nonvalvular paroxysmal atrial fibrillation (PAF) may have occult LV disease. Flow distribution analysis, based on 4-D flow, may unmask the presence of LV disease by assessing flow components: direct flow, retained flow, delayed ejection, and residual volume. This study aimed to identify LV hemodynamic inefficiencies in patients with PAF and normal systolic function. We hypothesized that the fraction of direct flow to the total end-diastolic volume would be reduced in patients with PAF compared with controls.Methods: We used 4-D LV flow component analysis to compare hemodynamics in 30 healthy controls and 50 PAF patients in sinus rhythm.Results: PAF subjects and healthy controls had similar LV mass, volume, and ejection fraction. Direct flow was lower in the PAF group than in the controls (44.5 ± 11.2% vs. 50.0 ± 12.2%, p = 0.042) while delayed ejection was higher in the PAF group (21.6 ± 5.6% vs. 18.6 ± 5.7%, p = 0.022).Conclusion: PAF patients demonstrated a relative reduction in direct flow and elevation in delayed ejection.


Author(s):  
Federico Pizzi ◽  
Andre Giesecke ◽  
Jan Simkanin ◽  
Frank Stefani

Abstract We numerically study precession driven flows in a cylindrical container whose nutation angle varies between 60 and 90 degrees for prograde and retrograde precession. For prograde precession we observe sharp transitions between a laminar and a turbulent flow state with low and high geostrophic axisymmetric flow components related with a centrifugal instability, while for retrograde precession a rather smooth transition between a low state and a high state occurs. At the same time prograde and perpendicular precession shows an abrupt breakdown of the flow directly excited by the forcing mechanism, which is not the case for retrograde motion. We characterize the corresponding flow states in terms of the directly driven, non-axisymmetric Kelvin mode, the axisymmetric geostrophic mode, and an axisymmetric poloidal flow which is promising for precession-driven dynamo action. The latter issue is discussed with particular view on an optimal parameter choice for the DRESDYN dynamo project.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012015
Author(s):  
Aimad Er-Raiy ◽  
Radouan Boukharfane ◽  
Linda Alzaben ◽  
Matteo Parsani

Abstract In the framework of turbulence-flame interaction, the flame is characterized by the gradient of a reactive scalar such as the progress variable, whereas the turbulence is represented by the vorticity and the strain rate. Quantitative assessment of this interaction is performed trough the study of the coupled transport between these quantities that are subject to the effects of heat release and chemical reactions. The present analysis aims at improving the understanding of the small scale turbulence – flame interaction properties, through the introduction of an additive decomposition of the strain rate and vorticity fields into their local and non-local components. The respective role of the local and non-local effects is studied for a broad range of Karlovitz numbers, by virtue of direct numerical simulations (DNS) of turbulent, premixed, lean, and statistically planar flames of methane-air. In the conditions of the present study, the alignment between flame front normals and the strain rate is found to be dominated by the local contribution from the strain rate tensor.


Author(s):  
Shibao Lu ◽  
Wenting Cai ◽  
Wei Shao ◽  
Farhad Taghizadeh-Hesary ◽  
Muhammad Faisal ◽  
...  

Deterioration of the ecological environment in the upper and middle reaches of the Yellow River in China substantially impacts the growth and development of aquatic organisms in the drainage basin. This paper builds a conceptual model by applying flow components and fish ecological requirements relation with a relevant object of main fish in the upper and middle reaches of the Yellow River. The paper utilized the flow restoration method by employing the River2D model (two-dimensional model of river hydrodynamics and fish habitat), and a one-dimensional hydrodynamics HEC-RAS (hydrologic engineering center’s-river analysis system). The calculation result showed that the runoff condition required for Silurus lanzhouensis survival is that the monthly lowest flow in a year is 150 m3·s−1, and the lowest flow for suitable flow from April to October is 150 m3·s−1, and 300 m3·s−1 from November to March. The research result is closer to the actual condition and has more outstanding operability. Meanwhile, the results proposed the coupling method of ecological water requirement for the mainstream of the Yellow River. Moreover, the results portrayed the ecological flow process according to the upper envelope of minimum and maximum ecological water requirements of each fracture surface. It is regarded that the ecological flow process is deemed as the initial value of the reservoir regulation model.


2021 ◽  
Vol 7 (2) ◽  
pp. 199-202
Author(s):  
Jochen Brenneisen ◽  
Carlo Wentzel ◽  
Farokh Karwan ◽  
Olaf Dössel ◽  
Axel Loewe

Abstract Mitral regurgitation alters the flow conditions in the left ventricle. To account for quantitative changes and to investigate the behavior of different flow components, a realistic computational model of the whole human heart was employed in this study. While performing fluid dynamics simulations, a scalar transport equation was solved to analyze vortex formation and ventricular wash-out for different regurgitation severities. Additionally, a particle tracking algorithm was implemented to visualize single components of the blood flow. We confirmed a significantly lowered volume of the direct flow component as well as a higher vorticity in the diseased case.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lukas Zenk ◽  
Dirk J. Primus ◽  
Stephan Sonnenburg

PurposeDo LEGO® SERIOUS PLAY® (LSP) workshops result in improved experience of flow components as well as higher levels of creative output than traditional meetings (MEET)? This research studies the extent to which LSP, as a specialized material-mediated and process-oriented cocreative workshop setting, differs from MEET, a traditional workshop setting. Hypotheses for differences in individual flow components (autotelic behavior, happiness, balance), group flow components (equal participation, continuous communication) and creative output were developed and tested in a quasi-experimental comparison between LSP and MEET.Design/methodology/approachThe study was conducted with 39 practitioners in six teams from various industries. In total, 164 observations were collected during two workshops using the Experience Sampling Method. The creative output was assessed by peer evaluations of all participants, followed by structural analysis and quantitative group comparisons.FindingsThe results show that two components of individual flow experience (autotelic behavior, happiness) were significantly higher in LSP, and one of the components of group flow experience (continuous communication) was, as expected, significantly lower. Regarding creative output, the LSP teams outperformed the MEET teams. The study suggests that a process-oriented setting that includes time for individuals to independently explore their ideas using a different kind of material in the presence of other participants has a significant influence on the team result.Practical implicationsLSP can improve the components of participants' flow experience to have an impact on the creative output of teams. In cocreative settings like LSP, teams benefit from a combination of alone time and high-quality collaborative activities using boundary objects and a clear process to share their ideas.Originality/valueThis is the first quasi-experimental study with management practitioners as participants to compare LSP with a traditional and widespread workshop approach in the context of flow experience and creative output.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 344
Author(s):  
Colin Stewart ◽  
Michael Gormley ◽  
Yunpeng Xue ◽  
David Kelly ◽  
David Campbell

A model is presented which allows steady-state pressure profiles in high-rise wastewater drainage networks to be related to intake air flowrates and discharge water flowrates. This model is developed using data taken from academic literature, and is based on experimental observations which suggest that a vertical annular downflow develops over distance such that the pressure gradient in the wet stack may be expressed as the sum of junction components and developed flow components. The model is used to analyse a simplified ‘medium rise’ primary vented system of height 40 m, hosting two inflow junctions, crossvents and Air Admittance Valves (AAVs). The model illustrates how the air supply configuration affects the airflow rates within the stack and the vents, and how the configuration affects the steady-state hydraulic pressure profile. The model offers the possibility of an alternative approach to the design of high-rise wastewater drainage networks, compared to existing design codes. These codes generally do not explain the role that the air admitted into the network has upon its performance.


Sign in / Sign up

Export Citation Format

Share Document