Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

2017 ◽  
Vol 196 ◽  
pp. 227-236 ◽  
Author(s):  
Rongjie Liu ◽  
Jie Zhang ◽  
Haiyan Yao ◽  
Tingwei Cui ◽  
Ning Wang ◽  
...  
Author(s):  
Sam Wouthuyzen ◽  
E. Kusmanto ◽  
M. Fadli ◽  
G. Harsono ◽  
G. Salamena ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2769
Author(s):  
Yingying Gai ◽  
Dingfeng Yu ◽  
Yan Zhou ◽  
Lei Yang ◽  
Chao Chen ◽  
...  

Chlorophyll-a (Chl-a) is an objective biological indicator, which reflects the nutritional status of coastal waters. However, the turbid coastal waters pose challenges to the application of existing Chl-a remote sensing models of case II waters. Based on the bio-optical models, we analyzed the suppression of coastal total suspended matter (TSM) on the Chl-a optical characteristics and developed an improved model using the imagery from a hyper-spectrometer mounted on an unmanned aerial vehicle (UAV). The new model was applied to estimate the spatiotemporal distribution of Chl-a concentration in coastal waters of Qingdao on 17 December 2018, 22 March 2019, and 20 July 2019. Compared with the previous models, the correlation coefficients (R2) of Chl-a concentrations retrieved by the new model and in situ measurements were greatly improved, proving that the new model shows a better performance in retrieving coastal Chl-a concentration. On this basis, the spatiotemporal variations of Chl-a in Qingdao coastal waters were analyzed, showing that the spatial variation is mainly related to the TSM concentration, wind waves, and aquaculture, and the temporal variation is mainly influenced by the sea surface temperature (SST), sea surface salinity (SSS), and human activities.


2020 ◽  
Vol 12 (5) ◽  
pp. 755
Author(s):  
Dae-Won Kim ◽  
Young-Je Park ◽  
Jin-Yong Jeong ◽  
Young-Heon Jo

Sea surface salinity (SSS) is an important tracer for monitoring the Changjiang Diluted Water (CDW) extension into Korean coastal regions; however, observing the SSS distribution in near real time is a difficult task. In this study, SSS detection algorithm was developed based on the ocean color measurements by Geostationary Ocean Color Imager (GOCI) in high spatial and temporal resolution using multilayer perceptron neural network (MPNN). Among the various combinations of input parameters, combinations with three to six bands of GOCI remote sensing reflectance (Rrs), sea surface temperature (SST), longitude, and latitude were most appropriate for estimating the SSS. According to model validations with the Soil Moisture Active Passive (SMAP) and Ieodo Ocean Research Station (I-ORS) SSS measurements, the coefficient of determination (R2) were 0.81 and 0.92 and the root mean square errors (RMSEs) were 1.30 psu and 0.30 psu, respectively. In addition, a sensitivity analysis revealed the importance of SST and the red-wavelength spectral signal for estimating the SSS. Finally, hourly estimated SSS images were used to illustrate the hourly CDW distribution. With the model developed in this study, the near real-time SSS distribution in the East China Sea (ECS) can be monitored using GOCI and SST data.


2021 ◽  
Vol 13 (14) ◽  
pp. 2676
Author(s):  
Jong-Kuk Choi ◽  
Young-Baek Son ◽  
Myung-Sook Park ◽  
Deuk-Jae Hwang ◽  
Jae-Hyun Ahn ◽  
...  

During the summer season, low-salinity water (LSW) inputs from the Changjiang River are observed as filamentous or lens-like features in the East China Sea. Sea surface salinity (SSS) is an important factor in ocean science, and is used to estimate oceanic carbon fluxes, trace red tides, and calculate other physical processes at the surface. In this study, a proxy was developed using remote sensing reflectance (Rrs) from the Geostationary Ocean Color Imager (GOCI) centered at 490 nm (band 3), 555 nm (band 4), 660 nm (band 5), and 680 nm (band 6), and salinity (data from summer cruises during the period of 2011–2016). It was then validated to map LSW plumes in the East China Sea. The GOCI-derived surface salinity was determined by the empirical relationships between Rrs at the four bands and in situ wave glider SSS data (August 2016), and was validated with synchronous in situ hydrographic SSS data (August 2011, 2012, 2013, and 2016). The GOCI-derived SSS was considered reliable in terms of the validation with the in situ measurement with a high coefficient of determination along with a low RMSE (R2 = 0.803, RMSE = 0.914, N = 21), and in comparisons with two previous models that were used to derive SSS in the East China Sea. The GOCI-derived SSS was successfully used to examine time-series variations on diurnal and daily scales, and the effects of a typhoon in terms of marine physical and biological properties in combination with the chlorophyll-a concentration and sea surface temperature.


Sign in / Sign up

Export Citation Format

Share Document