scholarly journals Design Aspects for Large-scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling

2018 ◽  
Vol 149 ◽  
pp. 585-594 ◽  
Author(s):  
Thomas Schmidt ◽  
Thomas Pauschinger ◽  
Per Alex Sørensen ◽  
Aart Snijders ◽  
Reda Djebbar ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2478 ◽  
Author(s):  
Oleg Todorov ◽  
Kari Alanne ◽  
Markku Virtanen ◽  
Risto Kosonen

Aquifer thermal energy storage (ATES) combined with ground-source heat pumps (GSHP) offer an attractive technology to match supply and demand by efficiently recycling heating and cooling loads. This study analyses the integration of the ATES–GSHP system in both district heating and cooling networks of an urban district in southwestern Finland, in terms of technoeconomic feasibility, efficiency, and impact on the aquifer area. A novel mathematical modeling for GSHP operation and energy system management is proposed and demonstrated, using hourly data for heating and cooling demand. Hydrogeological and geographic data from different Finnish data sources is retrieved in order to calibrate and validate a groundwater model. Two different scenarios for ATES operation are investigated, limited by the maximum pumping flow rate of the groundwater area. The additional precooling exchanger in the second scenario resulted in an important advantage, since it increased the heating and cooling demand covered by ATES by 13% and 15%, respectively, and decreased the energy production cost by 5.2%. It is concluded that dispatching heating and cooling loads in a single operation, with annually balanced ATES management in terms of energy and pumping flows resulted in a low long-term environmental impact and is economically feasible (energy production cost below 30 €/MWh).


2019 ◽  
Vol 665 ◽  
pp. 1-10 ◽  
Author(s):  
M. Pellegrini ◽  
M. Bloemendal ◽  
N. Hoekstra ◽  
G. Spaak ◽  
A. Andreu Gallego ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4339 ◽  
Author(s):  
Simone Buffa ◽  
Anton Soppelsa ◽  
Mauro Pipiciello ◽  
Gregor Henze ◽  
Roberto Fedrizzi

District heating and cooling (DHC) is considered one of the most sustainable technologies to meet the heating and cooling demands of buildings in urban areas. The fifth-generation district heating and cooling (5GDHC) concept, often referred to as ambient loops, is a novel solution emerging in Europe and has become a widely discussed topic in current energy system research. 5GDHC systems operate at a temperature close to the ground and include electrically driven heat pumps and associated thermal energy storage in a building-sited energy transfer station (ETS) to satisfy user comfort. This work presents new strategies for improving the operation of these energy transfer stations by means of a model predictive control (MPC) method based on recurrent artificial neural networks. The results show that, under simple time-of-use utility rates, the advanced controller outperforms a rule-based controller for smart charging of the domestic hot water (DHW) thermal energy storage under specific boundary conditions. By exploiting the available thermal energy storage capacity, the MPC controller is capable of shifting up to 14% of the electricity consumption of the ETS from on-peak to off-peak hours. Therefore, the advanced control implemented in 5GDHC networks promotes coupling between the thermal and the electric sector, producing flexibility on the electric grid.


1988 ◽  
Vol 20 (3) ◽  
pp. 75-86 ◽  
Author(s):  
H. Iihola ◽  
T. Ala-Peijari ◽  
H. Seppänen

The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100°C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, ‘Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.


2015 ◽  
Vol 137 ◽  
pp. 322-337 ◽  
Author(s):  
Wijbrand Sommer ◽  
Johan Valstar ◽  
Ingo Leusbrock ◽  
Tim Grotenhuis ◽  
Huub Rijnaarts

Sign in / Sign up

Export Citation Format

Share Document