Long baseline navigation with explicit pseudo-range clock offset and propagation speed estimation

2019 ◽  
Vol 49 ◽  
pp. 116-130 ◽  
Author(s):  
Pedro Batista
2013 ◽  
Vol 67 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Cao Fen ◽  
Yang XuHai ◽  
Su MuDan ◽  
Li ZhiGang ◽  
Feng ChuGang ◽  
...  

In order to more restrict the transverse orbit error, a new method named “differenced ranges between slave stations by transfer”, similar to Very Long Baseline Interferometry (VLBI) observation, has been developed in the Chinese Area Positioning System (CAPS). This method has the number of baselines added, the baseline length increased and the data volume enlarged. In this article, the principle of “differenced ranges between slave stations by transfer” has been described in detail, with the clock offset between slave stations and system error which affects the precision of the differenced ranges observation being discussed. Using this method, the differenced observation of the SINOSAT-1 satellite with C-band between slave stations from 6 to 13 June 2005 was conducted. Then a comparison was made between the accuracy of orbit determination and orbit prediction. A conclusion can be drawn that the combination of pseudo-range receiving the own-station-disseminated signal and the differenced range observation between slave-slave stations has a higher orbit determination and prediction accuracy than using only the former.


2007 ◽  
Vol 87 (12) ◽  
pp. 3096-3100 ◽  
Author(s):  
Jun Zheng ◽  
Kenneth W.K. Lui ◽  
H.C. So

2021 ◽  
Vol 944 (1) ◽  
pp. 012042
Author(s):  
Chonnaniyah ◽  
I W G A Karang ◽  
T Osawa

Abstract Remotely sensed data, both Synthetic Aperture Radar (SAR) and optical sensors, significantly contribute to the study and understanding internal solitary wave (ISW) dynamics in the ocean. Pairs of SAR and optical sensors were analyzed to estimate the ISW propagation speed in the northern-part of Lombok Strait. ISW propagation speed estimation used an image from Sentinel-1 SAR and three image pairs of Himawari-8 on 29 October 2018 with a time difference of 409 minutes. Sentinel-1 wide-swath imagery (250 km x 400 km) from two adjacent scenes can provide information on multiple ISW packets evolution in the northern-part of Lombok Strait. ISW propagation speed estimation on Sentinel-1 SAR image using the simple estimation by measuring the interpacket distance and dividing by the semidiurnal tidal period. The high temporal resolution of the optical sensor from Himawari-8 can estimate the ISW propagation speed using two different approaches. ISW propagation speed estimation using the semidiurnal tidal period from Sentinel-1 and Himawari-8 showed almost similar values. Sentinel-1 estimation results are 2.69 m.s−1 (Lombok Strait) and 1.30 m.s−1 (northern-part area), Himawari-8 results are 2.52 m.s−1 (Lombok Strait) and 1.27 m.s−1 (northern-part area). ISW propagation speed variability in the northern-part of the Lombok Strait shown in this study.


Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 64 ◽  
Author(s):  
Apurva Phogat ◽  
Gerhard Kronschnabl ◽  
Christian Plötz ◽  
Walter Schwarz ◽  
Torben Schüler

The Geodetic Observatory Wettzell (GOW), jointly operated by the Federal Agency for Cartography and Geodesy (BKG), Germany and the Technical University of Munich, Germany is equipped with three radio telescopes for Very Long Baseline Interferometry (VLBI). Correlation capability is primarily designed for relative positioning of the three Wettzell radio telescopes i.e., to derive the local ties between the three telescopes from VLBI raw data in addition to the conventional terrestrial surveys. A computing cluster forming the GO Wettzell Local Correlator (GOWL) was installed in 2017 as well as the Distributed FX (DiFX) software correlation package and the Haystack Observatory Postprocessing System (HOPS) for fringe fitting and postprocessing of the output. Data pre-processing includes ambiguity resolution (if necessary) as well as the generation of the geodetic database and NGS card files with υ Solve. The final analysis is either carried out with local processing software (LEVIKA short baseline analysis) or with the Vienna VLBI and Satellite (VieVS) software. We will present an overview of the scheduling, correlation and analysis capabilities at GOW and results obtained so. The dataset includes auxiliary files (schedule and log files) which contain information about the participating antenna, observed sources, clock offset between formatter and GPS time, cable delay, meteorological parameters (temperature, barometric pressure, and relative humidity) and ASCII files created after fringe fitting and final analysis. The published dataset can be used by the researchers and scientists to further explore short baseline interferometry.


Sign in / Sign up

Export Citation Format

Share Document