Scheduling with controllable release dates and processing times: Total completion time minimization

2006 ◽  
Vol 175 (2) ◽  
pp. 769-781 ◽  
Author(s):  
T.C. Edwin Cheng ◽  
Mikhail Y. Kovalyov ◽  
Natalia V. Shakhlevich
2014 ◽  
Vol 39 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Cheng He ◽  
Hao Lin ◽  
Yixun Lin ◽  
Junmei Dou

Abstract It is known that the single machine preemptive scheduling problem of minimizing total completion time with release date and deadline constraints is NP- hard. Du and Leung solved some special cases by the generalized Baker's algorithm and the generalized Smith's algorithm in O(n2) time. In this paper we give an O(n2) algorithm for the special case where the processing times and deadlines are agreeable. Moreover, for the case where the processing times and deadlines are disagreeable, we present two properties which could enable us to reduce the range of the enumeration algorithm


2015 ◽  
Vol 32 (04) ◽  
pp. 1550026 ◽  
Author(s):  
Yuan-Yuan Lu ◽  
Fei Teng ◽  
Zhi-Xin Feng

In this study, we consider a scheduling problem with truncated exponential sum-of-logarithm-processing-times based and position-based learning effects on a single machine. We prove that the shortest processing time (SPT) rule is optimal for the makespan minimization problem, the sum of the θth power of job completion times minimization problem, and the total lateness minimization problem, respectively. For the total weighted completion time minimization problem, the discounted total weighted completion time minimization problem, the maximum lateness minimization problem, we present heuristic algorithms (the worst-case bound of these heuristic algorithms are also given) according to the corresponding single machine scheduling problems without learning considerations. It also shows that the problems of minimizing the total tardiness, the total weighted completion time and the discounted total weighted completion time are polynomially solvable under some agreeable conditions on the problem parameters.


2006 ◽  
Vol 175 (2) ◽  
pp. 751-768 ◽  
Author(s):  
T.C. Edwin Cheng ◽  
Mikhail Y. Kovalyov ◽  
Natalia V. Shakhlevich

Sign in / Sign up

Export Citation Format

Share Document