scholarly journals A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times

2009 ◽  
Vol 197 (2) ◽  
pp. 492-508 ◽  
Author(s):  
Doreen Krüger ◽  
Armin Scholl
2022 ◽  
Vol 7 (2) ◽  
pp. 95-110 ◽  
Author(s):  
Amir Golab ◽  
Ehsan Sedgh Gooya ◽  
Ayman Al Falou ◽  
Mikael Cabon

This paper is concerned with an overview of the Resource-Constrained Project Scheduling Problem (RCPSP) and the conventional meta-heuristic solution techniques that have attracted the attention of many researchers in the field. Therefore, researchers have developed algorithms and methods to solve the problem. This paper addresses the single-mode RCPSP where the objective is to optimize and minimize the project duration while the quantities of resources are constrained during the project execution. In this problem, resource constraints and precedence relationships between activities are known to be the most important constraints for project scheduling. In this context, the standard RCPSP is presented. Then, the classifications of the collected papers according to the year of publication and the different meta-heuristic approaches applied are presented. Five weighted articles and their meta-heuristic techniques developed for RCPSP are described in detail and their results are summarized in the corresponding tables. In addition, researchers have developed various conventional meta-heuristic algorithms such as genetic algorithms, particle swarm optimization, ant colony optimization, bee colony optimization, simulated annealing, evolutionary algorithms, and so on. It is stated that genetic algorithms are more popular among researchers than other meta-heuristics. For this reason, the various conventional meta-heuristics and their corresponding articles are also presented to give an overview of the conventional meta-heuristic optimizing techniques. Finally, the challenges of the conventional meta-heuristics are explored, which may be helpful for future studies to apply new suitable techniques to solve the Resource-Constrained Project Scheduling Problem (RCPSP).


Author(s):  
Amirhossein Hosseinian ◽  
Vahid Baradaran

This paper addresses the Multi-Skill Resource-Constrained Project Scheduling Problem with Transfer Times (MSRCPSP-TT). A new model has been developed that incorporates the presence of transfer times within the multi-skill RCPSP. The proposed model aims to minimize project’s duration and cost, concurrently. The MSRCPSP-TT is an NP-hard problem; therefore, a Multi-Objective Multi-Agent Optimization Algorithm (MOMAOA) is proposed to acquire feasible schedules. In the proposed algorithm, each agent represents a feasible solution that works with other agents in a grouped environment. The agents evolve due to their social, autonomous, and self-learning behaviors. Moreover, the adjustment of environment helps the evolution of agents as well. Since the MSRCPSP-TT is a multi-objective optimization problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used in different procedures of the MOMAOA. Another novelty of this paper is the application of TOPSIS in different procedures of the MOMAOA. These procedures are utilized for: (1) detecting the leader agent in each group, (2) detecting the global best leader agent, and (3) the global social behavior of the MOMAOA. The performance of the MOMAOA has been analyzed by solving several benchmark problems. The results of the MOMAOA have been validated through comparisons with three other meta-heuristics. The parameters of algorithms are determined by the Response Surface Methodology (RSM). The Kruskal-Wallis test is implemented to statistically analyze the efficiency of methods. Computational results reveal that the MOMAOA can beat the other three methods according to several testing metrics. Furthermore, the impact of transfer times on project’s duration and cost has been assessed. The investigations indicate that resource transfer times have significant impact on both objectives of the proposed model


Sign in / Sign up

Export Citation Format

Share Document