Study of the Molecular Recognition Mechanism of an Ultrathin MIP Film-Based Chiral Electrochemical Sensor

2016 ◽  
Vol 217 ◽  
pp. 195-202 ◽  
Author(s):  
Bogdan-Cezar Iacob ◽  
Ede Bodoki ◽  
Cosmin Farcau ◽  
Lucian Barbu-Tudoran ◽  
Radu Oprean
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lan Guan ◽  
Parameswaran Hariharan

AbstractMajor facilitator superfamily_2 transporters are widely found from bacteria to mammals. The melibiose transporter MelB, which catalyzes melibiose symport with either Na+, Li+, or H+, is a prototype of the Na+-coupled MFS transporters, but its sugar recognition mechanism has been a long-unsolved puzzle. Two high-resolution X-ray crystal structures of a Salmonella typhimurium MelB mutant with a bound ligand, either nitrophenyl-α-d-galactoside or dodecyl-β-d-melibioside, were refined to a resolution of 3.05 or 3.15 Å, respectively. In the substrate-binding site, the interaction of both galactosyl moieties on the two ligands with MelBSt are virturally same, so the sugar specificity determinant pocket can be recognized, and hence the molecular recognition mechanism for sugar binding in MelB has been deciphered. The conserved cation-binding pocket is also proposed, which directly connects to the sugar specificity pocket. These key structural findings have laid a solid foundation for our understanding of the cooperative binding and symport mechanisms in Na+-coupled MFS transporters, including eukaryotic transporters such as MFSD2A.


Polymer ◽  
2006 ◽  
Vol 47 (11) ◽  
pp. 3792-3798 ◽  
Author(s):  
Li-Qin Lin ◽  
Ying-Chun Li ◽  
Qiang Fu ◽  
Lang-Chong He ◽  
Jing Zhang ◽  
...  

2011 ◽  
Vol 100 (3) ◽  
pp. 534a
Author(s):  
Canan Atilgan ◽  
A. Ozlem Aykut ◽  
Ali Rana Atilgan

2016 ◽  
Vol 51 (11) ◽  
pp. 742-750 ◽  
Author(s):  
Jing Liu ◽  
Hui C. Zhang ◽  
Chang F. Duan ◽  
Jun Dong ◽  
Guo X. Zhao ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Luigi Russo ◽  
Karin Giller ◽  
Edith Pfitzner ◽  
Christian Griesinger ◽  
Stefan Becker

2020 ◽  
Author(s):  
Lan Guan ◽  
Parameswaran Hariharan

AbstractThe symporter melibiose permease MelB is the best-studied representative from MFS_2 family and the only protein in this large family with crystal structure determined. Previous thermodynamic studies show that MelB utilizes a cooperative binding as the core mechanism for its obligatory symport. Here we present two sugar-bound X-ray crystal structures of a Salmonella typhimurium MelB D59C uniport mutant that binds and catalyzes melibiose transport uncoupled to either cation, as determined by biochemical and biophysical characterizations. The two structures with bound nitrophenyl-α-D-galactoside or dodecyl-β-D-melibioside, which were refined to a resolution of 3.05 or 3.15 Å, respectively, are virtually identical at an outward-facing conformation; each one contains a α-galactoside molecule in the middle of protein. In the substrate-binding site, the galactosyl moiety on both ligands are at an essentially same configuration, so a galactoside specificity determinant pocket can be recognized, and hence the molecular recognition mechanism for the binding of sugar in MelB is deciphered. The data also allow to assign the conserved cation-binding pocket, which is directly connected to the sugar specificity determinant pocket. The intimate connection between the two selection sites lays the structural basis for the cooperative binding and coupled transport. This key structural finding answered the long-standing question on the substrate binding for the Na+-coupled MFS family of transporters.SignificanceMajor facilitator superfamily_2 transporters contain >10,000 members that are widely expressed from bacteria to mammalian cells, and catalyze uptake of varied nutrients from sugars to phospholipids. While several crystal structures with bound sugar for other MFS permeases have been determined, they are either uniporters or symporters coupled solely to H+. MelB catalyzes melibiose symport with either Na+, Li+, or H+, a prototype for Na+-coupled MFS transporters, but its sugar recognition has been a long-unsolved puzzle. Two high-resolution crystal structures presented here clearly reveal the molecular recognition mechanism for the binding of sugar in MelB. The substrate-binding site is characterized with a small specificity groove adjoining a large nonspecific cavity, which could offer a potential for future exploration of active transporters for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document