Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors

2017 ◽  
Vol 231 ◽  
pp. 20-26 ◽  
Author(s):  
Alexander Weremfo ◽  
Sui Tung Clara Fong ◽  
Asim Khan ◽  
David B. Hibbert ◽  
Chuan Zhao
2010 ◽  
Vol 55 (6) ◽  
pp. 2029-2035 ◽  
Author(s):  
Sejin Park ◽  
Youn Joo Song ◽  
Ji-Hyung Han ◽  
Hankil Boo ◽  
Taek Dong Chung

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sarmiza-Elena Stanca ◽  
Oliver Vogt ◽  
Gabriel Zieger ◽  
Andreas Ihring ◽  
Jan Dellith ◽  
...  

AbstractPorous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.


1992 ◽  
Vol 4 (9) ◽  
pp. 859-864 ◽  
Author(s):  
Kenji Yokoyama ◽  
Kenji Nakajima ◽  
Shunichi Uchiyama ◽  
Shuichi Suzuki ◽  
Masayasu Suzuki ◽  
...  

2008 ◽  
Vol 8 (11) ◽  
pp. 1922-1927 ◽  
Author(s):  
Yi Jae Lee ◽  
Dae Joon Park ◽  
Jae Yeong Park

Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
R.F. Dodson ◽  
L.W-F Chu ◽  
N. Ishihara

The extent of damage surrounding an implanted electrode in the cerebral cortex is a question of significant importance with regard to attaining consistency and validity of physiological recordings. In order to determine the extent of such tissue changes, 150 micron diameter platinum electrodes were implanted in the cortex of four adult baboons, and after eight days the animals were sacrificed by whole body perfusion with a 3% glutaraldehyde in 0.1M phosphate fixative.The calvarium was carefully removed and the electrode tracts were readily discernible in the firm, glutaraldehyde fixed tissue.Careful dissection of the zone of the electrode tract resulted in a small block which was further sectioned into tip, mid-tract and surface areas. Ultrastructurally, damage extended from the electrode sheath to the greatest extent of from 0.2 to 3.5 mm.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Sign in / Sign up

Export Citation Format

Share Document