cyclic voltammograms
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 120)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 104 (4) ◽  
pp. 104-116
Author(s):  
A.K. Abildina ◽  
◽  
Kh. Avchukir ◽  
R. Zh. Dzhumanova ◽  
A.N. Beiseyeva ◽  
...  

Anode on the basis of titanium dioxide powder was made. Its morphological characteristics were investigated using ellipsometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical properties were also investigated by cyclic voltammetry. Dispersing, mixing the initial reagents for obtaining homogenized paste and its coating to a substrate, drying and cutting the electrodes were main steps of anode production. The results of ellipsometry, SEM and EDS demonstrated a uniformly distributed layer of about 200 μm thickness with porous structure, particle diameter of 50–80 nm and titanium dioxide content (45.7 %). The XRD data confirmed the active anode matrix formation with a monoclinic crystal lattice corresponding to the modification of titanium dioxide (B) with small anatase inclusions. Electrochemical behavior of the electrode was examined in acetonitrile-based Mg(TFSI)2 solution. Diffusion coefficient (DMg) and the charge transfer rate constant (kct) were determined from cyclic voltammograms 1.54∙10–2 cm2/s and 1.29∙10–4 cm/s, respectively. A two-step electrochemical reaction was revealed by the ratio of the electricity amount consumed in the cathode and anode processes at varying the number of cycles. Small values of polarization resistance (Rp) calculated from cyclic voltammograms indicated rapid diffusion of magnesium ions during intercalation/deintercalation.


2021 ◽  
Author(s):  
Kai Zheng ◽  
Yongqiu Xian ◽  
Zifeng LIN

Electrochemical quartz crystal microbalance (EQCM) is a powerful technique to screen the gravimetric response of electrochemical electrodes. In this study, a straightforward mathematical method is proposed for extracting and deconvoluting the real-time fluxes and ionic currents of two species based on the EQCM measurement results. We creatively propose the concept of flux cyclic voltammograms (CVs) and ionic current CVs of various species and apply them to the real-time analyses of molecules/ions dynamics. For proof of concept, Ti3C2Tx MXene, a most studied two-dimensional metal carbide, is investigated as a supercapacitor electrode in a 1M H2SO4 electrolyte. The H2O and H+ flux CV plots are highly symmetrical, indicating reversible inserting/deserting species fluxes. The highest fluxes along with maximum hydration numbers are obtained at the peak current potential. This suggests the significant contribution of double-layer capacitance originates from the insertion of hydrated H+. The H+ CV with the ionic current induced by H+ flux overlaps the real CV, confirming that H+ is the only interactive ion for screening the electrode charge. Lastly, we also validate the proposed strategy using Ti3C2Tx MXene electrode in 1M KCl electrolyte and YP80 porous carbon electrode in 1 M LiCl electrolyte.


Author(s):  
Keyvan Malaie ◽  
Zahra Heydari ◽  
Thierry Brousse

Abstract The extensive application of nickel foam (Ni foam) as current collector in supercapacitors has raised caveats on the contribution of the redox-active Ni foam to the measured capacities. However, due to the overlooked qualitative features (i.e., shapes) of the cyclic voltammograms (CVs), the redox reaction of the Ni foam oxide layer (NiFOL) has been frequently confused with the true electrochemical signature of the coated materials in alkaline solution. Herein, experimental CVs, scanning electron microscopy images, and estimations reveal that due to the high porosity of the Ni foam and its surface reactivity in alkaline solution (1-6 M KOH), the redox peak couple of the NiFOL can potentially be confused with or lead to misinterpretation of the true electrochemical features of the coatings. A classification of previous papers on a group of metal oxides investigated as battery-type or pseudocapacitive electrodes in the positive potential window is also presented to reveal the confusion between NiFOL and the coating when operated in alkaline solution.


Author(s):  
M. Alam Khan ◽  
Sunil Singh

We report here a combination of transition metal-based ternary sodium magnate layered cathodes with the compositions of Na0.8Fe0.4Mn0.3Co0.2O2, Na0.8Fe0.4Mn0.3Ni0.2O2, Na0.8Fe0.4Mn0.3V0.2O2, Na0.8Fe0.4Mn0.3Ti0.2O2, in order to elucidate the precise metal contents for the superb performing positive electrode. Based on their stoichiometry, the transition metal combination of Na0.8Fe0.4Mn0.3Co0.2O2, O3-type crystal structure with R3m space group possess superior electrochemical behavior under the test of sodium-ion battery. When the charge-discharge capacities in the range of 2.0-4.2 V at 0.1 C are measured, it shows the comparatively higher performance of the first and second charge capacities of 162 mAhg-1, 170 mAhg-1 and discharge capacities of 157 mAhg-1, 154 mAhg-1, respectively. Moreover, it was remarkable to observe that the increasing/decreasing Co constituent substantially affects the performance and stability, but using the ternary combination in cathodes, a substantial reduction of Jahn-Teller distortion and increased biphasic characteristics were observed. The as-synthesized samples were characterized by FE-SEM, XRD, charge-discharge curve, EIS and cyclic voltammograms.


Author(s):  
ahmad alkhawaldeh

Ferrocene and its derivatives have ecologically effective antidetane properties. In this regard, ferrocene reacts with cyclic ketones and ferrosenylcarbinols are synthesized. It should be noted that ferrocene enters into electrophilic reactions and the process takes place in an acidic environment. In addition, the yield of the new product was small compared to the reactions of ferrocene with non-cyclic ketones. This is due to the spatial structures of molecules. The elemental analysis of obtained compounds was carried out; the structures were researched by cyclic voltammograms and Chronoamperometric.


Author(s):  
Yachana Gupta Gupta ◽  
Kalpana ◽  
Aditya Sharma Ghrera

In this study, the lateral flow assay (LFA) has been developed for the detection of bacterial infection (BI) by specific biomarker procalcitonin (PCT), without a need for complicated instrumentations and technical expertise. For the development of the assay, gold nanoparticles (AuNP) and their conjugates with antibodies specific to the model antigen PCT are assessed. Polyclonal antibody (pAb) labelled with gold nanoparticles (AuNP) to obtain the AuNP-pAb complex and the specific monoclonal antibody (mAb) have been dropped at the test zone. This complex is placed over the conjugate line of the LFA strip. In the absence of PCT or the presence of other biomarkers, the test line remained colourless, which revealed the specificity of assay towards PCT among a pool of various analytes. Herein, observations have been made through two different platforms for quantitative and qualitative analysis for the detection of PCT biomarker. The qualitative analysis has been performed on the basis of appearance red color in the test band, while for quantitative analysis, a novel approach has been adopted. Herein, the nitrocellulose membrane (paper strip) is cut out from the LFA strip and used for electrochemical studies under similar solution conditions. Different paper strips presented different cyclic voltammograms (CV) that could be correlated to varying PCT concentrations captured at the test line of the paper strip. The qualitative detection limit for PCT using this LFA was determined to be 2 ng/ml and the quantitative detection limit was 1 ng/ml. The electrochemical response studies of the paper strip by CV technique revealed the sensitivity value of 0.695 mA ng/ml.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yeray Asensio ◽  
María Llorente ◽  
Alejandro Sánchez-Gómez ◽  
Carlos Manchon ◽  
Karina Boltes ◽  
...  

The capacity of electroactive bacteria to exchange electrons with electroconductive materials has been explored during the last two decades as part of a new field called electromicrobiology. Such microbial metabolism has been validated to enhance the bioremediation of wastewater pollutants. In contrast with standard materials like rods, plates, or felts made of graphite, we have explored the use of an alternative strategy using a fluid-like electrode as part of a microbial electrochemical fluidized bed reactor (ME-FBR). After verifying the low adsorption capacity of the pharmaceutical pollutants on the fluid-bed electrode [7.92 ± 0.05% carbamazepine (CBZ) and 9.42 ± 0.09% sulfamethoxazole (SMX)], our system showed a remarkable capacity to outperform classical solutions for removing pollutants (more than 80%) from the pharmaceutical industry like CBZ and SMX. Moreover, the ME-FBR performance revealed the impact of selecting an anode potential by efficiently removing both pollutants at + 200 mV. The high TOC removal efficiency also demonstrated that electrostimulation of electroactive bacteria in ME-FBR could overcome the expected microbial inhibition due to the presence of CBZ and SMX. Cyclic voltammograms revealed the successful electron transfer between microbial biofilm and the fluid-like electrode bed throughout the polarization tests. Finally, Vibrio fischeri-based ecotoxicity showed a 70% reduction after treating wastewater with a fluid-like anode (+ 400 mV), revealing the promising performance of this bioelectrochemical approach.


2021 ◽  
Vol 22 (23) ◽  
pp. 12701
Author(s):  
Sarra Takita ◽  
Alexei Nabok ◽  
Anna Lishchuk ◽  
David Smith

This work is a continuation of our research into the development of simple, reliable, and cost-effective methods for the early diagnosis of prostate cancer (PCa). The proposed method is based on the electrochemical detection of the PCA3 biomarker of PCa (long non-coded RNA transcript expressed in urine) using a specific aptamer labeled with a redox group (methylene blue). The electrochemical measurements (cyclic voltammograms) obtained from electrodes functionalized with the aptamer were complemented in this work by another biosensing technique: total internal reflection ellipsometry (TIRE). In addition to proving the concept of the detection of PCA3 in low concentrations down to 90 pM, this study improved our understanding of the processes by which PCA3 binds to its specific aptamer. The high specificity of the binding of PCA3 to the aptamer was assessed by studying the binding kinetics, which yielded an affinity constant (KD) of 2.58 × 10−9 M. Additional XPS measurements confirmed the strong covalent binding of aptamers to gold and showed spectral features associated with PCA3 to aptamer binding.


Author(s):  
Lingling Shen ◽  
Dexi Wang ◽  
Ali Reza Kamali ◽  
Ming Li ◽  
Zhongning Shi

Abstract Highly pure silicon is an important component in photovoltaic applications and has potential in battery technology. In this study, the electrochemical behavior of Si (IV) was discussed in a NaF−LiF−Na2SiO3−SiO2 electrolyte at 750 °C , and lithium-ion battery performance with electrodeposited silicon powder as anode material were investigated. The cyclic voltammograms illustrated that the reduction of Si(IV) on an Ag electrode followed an irreversible two-step, two-electron process: Si(IV) → Si(II) and Si(II) → Si(0). Both reduction steps involved diffusion control, and the diffusion coefficients were 1.18 and 1.22 × 10−6 cm2/s, respectively. Nanoscale spherical silicon was deposited between potentials of −1.0 to −1.6 V (vs. Pt) with support of X-ray diffraction patterns, Raman spectra, and scanning electron microscopy analysis. Combining the fabricated silicon with carbon, a Si@C composite anode material for lithium-ion batteries was prepared, and its specific capacity reached 1260 mAh/g. Notably, a capacity of 200 mAh/g was maintained over 100 cycles.


Author(s):  
Chan Mi Kim ◽  
In Ui Kim ◽  
S. P. Yoon ◽  
Sung Ki Cho

Abstract This study investigates the effect of MgO as an additive in molten Li2CO3-Na2CO3 electrolyte for molten carbonate fuel cells through electrochemical analyses. Addition of MgO (1~5 mol%) increased the electrochemical response in cyclic voltammogram of peroxide in molten Li2CO3-Na2CO3. The diffusion coefficient of peroxide in molten Li2CO3-Na2CO3 containing MgO was determined via the comparison between the peak currents of cyclic voltammograms from microwire electrode and macrowire electrode. The addition of MgO did not impact the diffusion coefficient, indicating that the increase in the electrochemical response with the addition of MgO might be attributed to the increase in the peroxide concentration. The change in peroxide concentration was also confirmed by electrochemical impedance analyses, which exhibited a decrease in the exchange current density. The increase in the concentration of peroxide with the addition of MgO might be associated with the high thermal decomposition constant of MgCO3, implying the high concentration of oxide ion in the molten Li2CO3-Na2CO3. This study suggests that MgO might be an effective additive for increasing the oxygen solubility in the molten Li2CO3-Na2CO3, and subsequently for enhancing the performance of molten carbonate fuel cells.


Sign in / Sign up

Export Citation Format

Share Document