Exergetic assessment of transmission concentrated solar energy systems via optical fibres for building applications

2008 ◽  
Vol 40 (8) ◽  
pp. 1505-1512 ◽  
Author(s):  
Canan Kandilli ◽  
Koray Ulgen ◽  
Arif Hepbasli
Author(s):  
Francis A. Di Bella ◽  
Jonathan Gwiazda

This paper reviews a novel power generation system that improves the overall efficiency of concentrated solar energy systems while also providing for the cost effective reclamation and utilization of a man-made geo-physical phenomenon: decommissioned, open pit mines. A preliminary feasibility will be presented of an integrated system consisting of a concentrated solar energy powered Rankine Cycle system and the authors’ novel (patent pending) energy recovery system that consists of a thermally induced, pneumatic (wind turbine) power tube system (Pneumatic Power Tube) that is designed with reflective surfaces for concentrating solar energy. The proposed system is unique in the field of power generation using renewable/natural resources while also providing a solution to the reclamation and utilization of depleted open pit mines. The paper presents a parametric feasibility study of the proposed system installed for a range of “small” and “large” open-pit mines, such as the Palabora copper open pit mine located in South Africa. Using state-of-the-art specifications for power generation from concentrated solar energy systems based on D.O.E. supported research, a average size integrated installations could generate approx. 700–750 Mwe with 12–18 Mwe contributed by the new Pneumatic Power Pit Tubes. The enhancements include a unique design for a pneumatic power tube that combines the functions of solar collector/reflector with a hot air “chimney” air diffuser and wind power generation. A schematic of the proposed integrated system is also provided. The paper also presents a summary of the major technical benefits of the proposed system including the synergisms between the proposed renewable energy system and the application of DOE’s microwave power generation and transmission as well as the societal benefits of reclaiming land areas that are otherwise not suitable for habitation. Suggestions will also be made as to the application of authors’ pneumatic wind turbine power tubes to other large, naturally occurring geo-physical phenomenon.


2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document