Condensate drainage on slit or louvered fins in microchannel heat exchangers for anti-frosting

2020 ◽  
Vol 223 ◽  
pp. 110215 ◽  
Author(s):  
Wei Sheng ◽  
Xueli Li ◽  
Ruirui Wang ◽  
Chaobin Dang ◽  
Mengjie Song
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
P. Gunnasegaran ◽  
N. H. Shuaib ◽  
M. F. Abdul Jalal

Compact heat exchangers (CHEs) have been widely used in various applications in thermal fluid systems including automotive thermal management systems. Among the different types of heat exchangers for engine cooling applications, cross-flow CHEs with louvered fins are of special interest because of their higher heat rejection capability with the lower flow resistance. In this study, the effects of geometrical parameters such as louver angle and fin pitch on air flow and heat transfer characteristics on CHEs are numerically investigated. Numerical investigations using five different cases with increased and decreased louver angles (+2°, +4°, −2°, −4°, and uniform angle 20°), with a fixed fin pitch and using three different fin pitches (1.0 mm, 2.0 mm, and 4.0 mm), and with the fixed louver angle are examined. The three-dimensional (3D) governing equations for the fluid flow and heat transfer are solved using a standard finite-volume method (FVM) for the range of Reynolds number between 100 and 1000. The computational model is used to study the variations of pressure drop, flow temperature, and Nusselt number.


Author(s):  
Justin J. Gossard ◽  
Andrew D. Sommers

The need for more compact and more efficient heat exchangers in the aerospace, automotive, and HVAC&R industries has led to the development of heat exchangers that utilize minichannel or microchannel tubes coupled with louvered fins. Minichannel and microchannel heat exchangers exhibit enhanced heat transfer with a minimal increase in pressure drop over conventional round tube, plain fin heat exchangers often with a significant reduction in the required refrigeration charge and overall heat exchanger size. This paper presents the development and validation of a finite volume, steady-state evaporator model to be used as an aid in heat exchanger design and analysis. The model focuses on evaporator geometries that include minichannel and microchannel tubes with louvered fins and headers. Multiple published correlations provide the user with options for calculating the air-side and refrigerant-side heat transfer and pressure drops within the control volume. Once the model was validated, it was then briefly used to study the effects of maldistribution of refrigerant within the inlet headers on the cooling capacity and refrigerant side pressure drop.


1984 ◽  
Vol 27 (224) ◽  
pp. 219-226 ◽  
Author(s):  
Takeo TANAKA ◽  
Masaaki ITOH ◽  
Mitsuo KUDOH ◽  
Akira TOMITA

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
M. Ferrero ◽  
A. Scattina ◽  
E. Chiavazzo ◽  
F. Carena ◽  
D. Perocchio ◽  
...  

Louvered fins perform better than any other geometry in accomplishing the task of enhancing heat transfer of compact heat exchangers without prohibitive costs and pressure drops. For this reason, they are widely adopted for automotive applications. However, in order to improve louvered-fin compact heat exchangers, it is strongly required to understand how louvered fins behave regarding both heat transfer and pressure drop taking into account industrial constraints. For this purpose, numerical simulations based on the equations of thermofluid dynamics have been developed for this study. In particular, boundary heat flux and pressure distributions have been analyzed along the louvered-fin assembly and around the louvers, and even the effects of the flat portions (central and lateral louvers) have been investigated. In particular, the effects of the main geometrical parameters, such as fin pitch, louver pitch, and louver angle, have been evaluated by performing simulations on 40 different configurations. The results show that there is not one optimum configuration for the heat exchangers. Finally, a detailed procedure for the optimization of louvered-fin compact heat exchangers, considering industrial constraints is suggested according to multiple regression technique of the numerical results.


Sign in / Sign up

Export Citation Format

Share Document