cooling capacity
Recently Published Documents


TOTAL DOCUMENTS

893
(FIVE YEARS 339)

H-INDEX

29
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Ruirui Wang ◽  
Jixing Zeng ◽  
Kehao Chen ◽  
Qihui Ding ◽  
Qirong Shen ◽  
...  

Author(s):  
И.А. Драбкин ◽  
Л.Б. Ершова

It is suggested that thermoelectric coolers designing should not be limited to the extreme modes of their operation. In some cases, it is convenient to use the so called hybrid modes - a combination of the extreme mode of maximum coefficient of performance for large temperature differences and a general cooling mode for small ones. The proposed hybrid mode makes it possible to control the cooling capacity of the module and not to confine this value to that under the extreme operating conditions, the maximum coefficient of performance in particular.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012032
Author(s):  
Hongxuan Li ◽  
Tonghua Zou ◽  
Qingling Hui ◽  
Ting Li ◽  
Walter Mittelbach

Abstract In recent years, adsorption refrigeration technology has attracted wide attention from experts and scholars at home and abroad due to its environmental friendliness and energy saving advantages. In order to study the effectiveness of adsorption refrigeration technology to recover low-grade energy, a silica gel-water adsorption refrigeration system was proposed, which can effectively utilize low-grade energy such as industrial waste heat. The structure and composition of the system are introduced. The operation performance of the unit is tested under different working conditions by orthogonal experimental method, and the experimental results are analyzed. The effects of hot water temperature and flow, chilled water temperature and flow on the refrigeration capacity and COP value of the system are obtained. The experimental results show that under the low-temperature heat source of 55-75°C, the cooling capacity of the system can reach 5.3-12 and the COP value can reach 0.36-0.56. Under the same hot water temperature difference, the cooling capacity and COP value of the system increase rapidly under the condition of changing the hot water temperature at low temperature, indicating that increasing the heat source temperature at low temperature has a greater impact on the system performance. Through the analysis of primary and secondary effects, it is concluded that the inlet temperature of hot water is the main factor affecting the refrigeration capacity and COP value of the system.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012016
Author(s):  
Z Hassan ◽  
M S Misaran ◽  
N J Siambun ◽  
M Adzrie

Abstract This experimental study aimed to determine the effect of airflow velocity on the performance of a direct evaporative cooling system. Rectangular-shaped honeycomb cooling pads with a length of 34 cm, a width of 25 cm, and a thickness of 3.5 cm are used as cooling media. The main parameters of the study are low air velocity (2.3 ms−1), medium (3.2 ms−1), and high velocity (3.7 ms−1). The data collected include dry bulb temperature, wet bulb temperature, output air temperature, input and output air velocity, input and output humidity, and solar radiation. These data are used to determine saturation efficiency, cooling capacity, temperature decreases, and feasibility index. The experimental results are presented in the form of tables and graphs and analysed based on existing theories. The results showed that the evaporative cooling system could produce output temperatures up to 27.5°C with input 31.4°C at low airspeed, 27.97°C with input 31.47oC at medium speed, and 27.7°C with input 31.30°C at high air speed. It was concluded that a low airflow rate would add to the cooling efficiency, and the higher the airflow rate, the lower the cooling efficiency. The results showed that evaporative cooling is achievable with a feasibility index of 19.89 ≤ F*≤ 20.67. The results also affirmed that cooling capability is higher where the feasibility indexes are comparatively low.


2022 ◽  
Vol 42 ◽  
pp. 02008
Author(s):  
Vyacheslav Gulevsky ◽  
Vyacheslav Makovichko

When growing various crops in greenhouses an important condition for obtaining high yields is compliance with the required parameters of the temperature regime of the air environment. The air conditioning systems currently used in greenhouses of the V generation “Ultra Clima” are equipped with adiabatic panels that cool the air entering the room by evaporation of moisture from their surface. However, in some cases, such systems are not able to support the required values. This is due to the large heat flows entering the greenhouse in the summer. The paper analyzes the temperature balance of the air environment of greenhouses of the V generation, evaluates the main heat flows, determines the operating modes of cooling systems that guarantee sufficient cooling capacity to achieve the required temperatures in the room.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012063
Author(s):  
Lining Yang ◽  
Xiaoxia Sun ◽  
Tao Zhang

Abstract In this paper, GT suite software is used to model the cooling system of military special vehicles with multiple power sources. The power drive system is composed of main engine, auxiliary engine and four hub motors. By constructing modular cooling unit, the volume of radiator and the layout of cooling unit are changed. While the total volume of radiator is unchanged, the cooling capacity of cooling system is improved. Firstly, the problem is simplified and modeled by high-temperature and low-temperature double circuit. The main engine with power of 600kW and auxiliary engine with power of 200kW are combined into a high-temperature circuit. The water temperature of the circuit is higher, about 90 ºC; Four hub motors with power of 440kw and their electrical components are combined into a low temperature circuit. The water temperature of this circuit is about 60 ºC. By modifying the volume, layout and number of radiators, the temperature of the dual circuit is analyzed, and it is found that when the total radiator volume remains the same, the cooling effect of the multi-radiator layout is better.


2022 ◽  
Vol 234 ◽  
pp. 111419
Author(s):  
Jie Feng ◽  
Kai Gao ◽  
Yue Jiang ◽  
Giulia Ulpiani ◽  
Djordje Krajcic ◽  
...  
Keyword(s):  

2022 ◽  
Vol 960 (1) ◽  
pp. 012004
Author(s):  
S.O.L. Lacour ◽  
M. Feidt

Abstract Spraying water in air improves air-cooling capacity, which then relies on the evaporation of water. Even for small drop sizes, literature reports that the evaporation remains limited inside the spray and below saturation limits. In this article, we describe the evolution of thermodynamic quantities in a mixture of air and evaporating liquid water. A complete and coherent formulation is used to express enthalpy, entropy and chemical potential. At constant enthalpy, we show that the chemical equilibrium corresponds to an intermediate state in which droplet evaporation is not complete and entropy is maximum under certain conditions. Results are compared with some experimental values measured in a wind tunnel downstream of a spray. The calculated values are consistent with observations. Cooling efficiency is discussed for the various parameters, which are the amount of water, air temperature and ambient humidity. Then, the numerical approach is inverted in order to forecast the amount of water needed to reach a target cooling temperature. This numerical approach is used to set water flow depending on inlet flow conditions and cooling objectives.


Author(s):  
A. Babichenko ◽  
Yu. Babichenko ◽  
Ya. Kravchenko ◽  
I. Krasnikov

The features of the hardware and technological design of the AM-1360 series ammonia synthesis units operating in Ukraine are established, the main of which is the use of heat-using ammonia-water absorption and refrigeration units in the secondary condensation complex. The analysis of the functioning of the absorption and refrigeration units has been carried out. A significant dependence of their efficiency on external disturbances, such as temperature and humidity of atmospheric air, has been established. This causes significant fluctuations in the cooling temperature of the circulating gas in the evaporators of absorption-refrigeration units, which significantly affects the efficiency of ammonia production in general. Based on the results of the analysis of the existing information system, implemented on the basis of the TDC-3000 microprocessor complex, recommendations for its improvement were developed, the presence of which makes it possible to abandon daily analyzes and carry out only control ones to check measuring instruments. Algorithmic support has been developed, implemented in the MATLAB package and tested according to the data of industrial operation of absorption and refrigeration units of the ammonia synthesis unit. This allows the operator, in real production conditions, to obtain operational information on the numerical indicators of the efficiency of operation of absorption and refrigeration units, which characterize their operation to the greatest extent (circulation rate, cooling capacity, circulating gas cooling temperature and thermal coefficient) and make a decision on the possibility of reducing the cooling temperature. of circulation gas in evaporators by changing the frequency of circulation of solutions The created algorithmic software in the MATLAB environment allows embedding a client module, the so-called OPC client. The latter provides technology for free programming of access to current data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zenon J. Czenze ◽  
Marc T. Freeman ◽  
Ryno Kemp ◽  
Barry van Jaarsveld ◽  
Blair O. Wolf ◽  
...  

Avian evaporative cooling and the maintenance of body temperature (Tb) below lethal limits during heat exposure has received more attention in small species compared to larger-bodied taxa. Here, we examined thermoregulation at air temperatures (Tair) approaching and exceeding normothermic Tb in three larger birds that use gular flutter, thought to provide the basis for pronounced evaporative cooling capacity and heat tolerance. We quantified Tb, evaporative water loss (EWL) and resting metabolic rate (RMR) in the ∼170-g Namaqua sandgrouse (Pterocles namaqua), ∼430-g spotted thick-knee (Burhinus capensis) and ∼670-g spotted eagle-owl (Bubo africanus), using flow-through respirometry and a stepped Tair profile with very low chamber humidities. All three species tolerated Tair of 56–60°C before the onset of severe hyperthermia, with maximum Tb of 43.2°C, 44.3°C, and 44.2°C in sandgrouse, thick-knees and eagle-owls, respectively. Evaporative scope (i.e., maximum EWL/minimum thermoneutral EWL) was 7.4 in sandgrouse, 12.9 in thick-knees and 7.8 in eagle-owls. The relationship between RMR and Tair varied substantially among species: whereas thick-knees and eagle-owls showed clear upper critical limits of thermoneutrality above which RMR increased rapidly and linearly, sandgrouse did not. Maximum evaporative heat loss/metabolic heat production ranged from 2.8 (eagle-owls) to 5.5 (sandgrouse), the latter the highest avian value yet reported. Our data reveal some larger species with gular flutter possess pronounced evaporative cooling capacity and heat tolerance and, when taken together with published data, show thermoregulatory performance varies widely among species larger than 250 g. Our data for Namaqua sandgrouse reveal unexpectedly pronounced variation in the metabolic costs of evaporative cooling within the genus Pterocles.


Sign in / Sign up

Export Citation Format

Share Document