Study of the thermal performance of a distributed solar heating system for residential buildings using a heat-user node model

2021 ◽  
pp. 111569
Author(s):  
Yanfeng Liu ◽  
Jingrui Liu ◽  
Yaowen Chen ◽  
Dengjia Wang ◽  
Yong Li ◽  
...  
2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


2005 ◽  
Vol 127 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Simon Furbo ◽  
Niels Kristian Vejen ◽  
Louise Jivan Shah

In year 2000 a 336 m2 solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank design ensures an excellent thermal stratification in the tank. The solar heating system was installed in May 2000. The thermal performance of the solar heating system has been measured in the first two years of operation. Compared to other large Danish solar domestic hot water systems the system is performing well in spite of the fact that the solar collectors are far from being orientated optimally. The utilization of the solar radiation on the collectors is higher, 46% in the second year of operation, than for any other system earlier investigated in Denmark, 16%–34%. The reason for the good thermal performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes.


2014 ◽  
Vol 48 ◽  
pp. 280-289 ◽  
Author(s):  
Florian Bertsch ◽  
Dagmar Jaehnig ◽  
Sebastian Asenbeck ◽  
Henner Kerskes ◽  
Harald Drueck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document