05/02620 Thermal performance of PCM thermal storage unit for a roof integrated solar heating system

2005 ◽  
Vol 46 (6) ◽  
pp. 383
2020 ◽  
Vol 10 (3) ◽  
pp. 5814-5818
Author(s):  
M. A. Aichouni ◽  
N. F. Alshammari ◽  
N. Ben Khedher ◽  
M. Aichouni

The intermittent nature of renewable energy sources such as solar and wind necessitates integration with energy-storage units to enable realistic applications. In this study, thermal performance enhancement of the finned Cylindrical Thermal Energy Storage (C-TES) with nano-enhanced Phase Change Material (PCM) integrated with the water heating system under Storage, Charging and Discharging (SCD) conditions were investigated experimentally. The effects of the addition of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles in PCM on thermal conductivity, specific heat, and on charging and discharging performance rates were theoretically and experimentally investigated and studied in detail. The experimental apparatus utilized paraffin wax as PCM, which was filled in Finned C-TES to conduct the experiments. The experimental results showed a positive improvement compared with the non-nano additive PCM. The significance and originality of this project lies within the evaluation and identification of preferable metal-oxides with higher potential for improving thermal performance.


2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


2019 ◽  
Vol 250 ◽  
pp. 1280-1291 ◽  
Author(s):  
C.Q. Chen ◽  
Y.H. Diao ◽  
Y.H. Zhao ◽  
W.H. Ji ◽  
Z.Y. Wang ◽  
...  

2012 ◽  
Vol 5 (4) ◽  
pp. 499-506
Author(s):  
Giedrė Streckienė ◽  
Salomėja Bagdonaitė

The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional heat source, should allow covering the remaining heat demand. energyPRO software is used for system modelling. The paper evaluates heat demand, climate conditions and technical characteristics. Santrauka Šilumos akumuliavimo sistemos integracija į saulės šildymo sistemą suteikia galimybę padidinti Saulės šiluminės energijos panaudojimą pastatuose, nes tai leidžia išvengti vartotojų poreikio ir šilumos gamybos nesutapimo laike. Šiame darbe modeliuojama sezoninė šilumos akumuliacinė talpykla, analizuojami įvairūs jos dydžiai centralizuotoje saulės šildymo sistemoje. Nagrinėjama sistema galėtų užtikrinti dalį individualių namų mikrorajono, esančio Vilniuje, šilumos poreikių. Kaip papildomas šilumos šaltinis modeliuojama biokuro katilinė, kuri leistų užtikrinti likusią šilumos poreikių dalį. Modeliavimas atliekamas energyPRO programa įvertinant pastatų poreikius, klimatines sąlygas ir technologines įrenginių charakteristikas.


Sign in / Sign up

Export Citation Format

Share Document