An improved actuator disc model for the numerical prediction of the far-wake region of a horizontal axis wind turbine and its performance

2019 ◽  
Vol 185 ◽  
pp. 482-495 ◽  
Author(s):  
Ali Behrouzifar ◽  
Masoud Darbandi
Wind Energy ◽  
2015 ◽  
Vol 19 (7) ◽  
pp. 1249-1267 ◽  
Author(s):  
Pooyan Hashemi Tari ◽  
Kamran Siddiqui ◽  
Horia Hangan

Author(s):  
Ali Behrouzifar ◽  
Masoud Darbandi ◽  
Gerry E. Schneider

In this paper, the actuator disk (AD) method is used to simulate the wind turbine performance and far-wake behavior. In this work, we incorporate the AD method with an axisymmetric full Navier-Stokes solver. In other words, the calculated AD load is suitably distributed on the disc to impose the aerodynamic forces acting on the blade. One important factor among various different factors, which affect the AD modeling prediction considerably, is the utilized grid thickness. In this work, we first choose the grid thickness recommended by the other researches and study the actual thickness of NREL 5MW wind turbine. Next, many other configurations are considered in our AD thickness modeling including a constant thickness and the actual thickness configurations. The latter one has a linear thickness distribution from 3.54 m at the root to 0.7 m at tip. The wind speed is ranged from 3 to 11 m/s consistent with the practical tests performed on the NREL 5MW wind turbine. We calculate the generated power for all the simulated configurations and their percentages of differences. The results show that the lowest difference is about 4.5% for a constant AD thickness of 0.2 m. Therefore, we conclude that the current AD model predicts results very close to the NREL design data. Additionally, this accurate prediction is similarly observed in the other ranges of wind turbine operational speeds.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2763 ◽  
Author(s):  
Victor P. Stein ◽  
Hans-Jakob Kaltenbach

The present paper addresses the evolution of turbulence characteristics in wind turbine wakes immersed in a turbulent boundary layer. The study thereby focuses on finding physically consistent scaling laws for the wake width, the velocity deficit, and the Reynolds stresses in the far wake region. For this purpose, the concept of an added wake is derived which allows to analyse the self-similarity of the added flow quantities and the applicability of the non-equilibrium dissipation theory. The investigation is based on wind tunnel measurements in the wake of a three-bladed horizontal axis wind turbine model (HAWT) immersed in two neutrally-stratified turbulent boundary layers of different aerodynamic roughness length. The dataset also includes wake measurements for various yaw angles. A high degree of self-similarity is found in the lateral profiles of the velocity deficit and of the added Reynolds stress components. It is shown that these can be described by combined Gaussian shape functions. In the vertical, self-similarity can just be shown in the upper part of the wake. Moreover, it is observed that the degree of self-similarity is affected by the ground roughness. Results suggest an approximately constant anisotropy of the added turbulent stresses in the far wake, and the axial scaling of the added Reynolds stress components is found to be in accordance with non-equilibrium dissipation theory. It predicts a x − 1 decay of the added turbulent intensity I + , and a x − 2 evolution of the added Reynolds shear stresses Δ u i ′ u j ′ ¯ and the velocity deficit Δ u . Based on these findingsa semi-empirical model is proposed for predicting the Reynolds stresses in the far wake region which can easily be coupled with existing analytical wake models. The proposed model is found to be in good agreement with the measurement results.


2014 ◽  
Vol 2014 (0) ◽  
pp. _0520-1_-_0520-2_
Author(s):  
Yuji TASAKA ◽  
Takahiro NAKASHIMA ◽  
Yuichi MURAI ◽  
Yoshihiko OISHI

Author(s):  
Essam E. Khalil ◽  
Gamal E. ElHarriri ◽  
Eslam E. AbdelGhany ◽  
Moemen E. Farghaly

2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Sign in / Sign up

Export Citation Format

Share Document