Wind resource assessment based on numerical simulations and an optimized ensemble system

2019 ◽  
Vol 201 ◽  
pp. 112164
Author(s):  
Jing Zhao ◽  
Zhenhai Guo ◽  
Yanling Guo ◽  
Ye Zhang ◽  
Wantao Lin ◽  
...  
2020 ◽  
Vol 186 ◽  
pp. 03003
Author(s):  
Jia Yi Jin ◽  
Rizwan Ghani ◽  
Muhammad S. Virk

This paper describes a case study of wind turbine wake loss effects on wind resource assessment in cold region. One year wind park SCADA data is used. Computational Fluid Dynamics (CFD) based numerical simulations are carried out for wind resource assessment and estimation of resultant Annual Energy Production (AEP). Numerical results are compared with the field SCADA data, where a good agreement is found. To better understand the wind flow physics and effects of wind turbine turbulence wake loss effects, three different wake loss models are used for the numerical simulations, where results with wake model is found in best agreement with the AEP estimation from field SCADA data. A detailed comparison of all wind turbines is also presented with the gross AEP. A preliminary case study about wind park layout optimization has also been carried out which shows that AEP can be improved by optimizing the wind park layout and CFD simulations can be used as a tool in this regards.


Author(s):  
Cian James Desmond ◽  
Simon J. Watson ◽  
Sandrine Aubrun ◽  
Sergio Ávila ◽  
Philip Hancock ◽  
...  

2018 ◽  
Vol 875 ◽  
pp. 94-99
Author(s):  
Jia Yi Jin ◽  
Pavlo Sokolov ◽  
Muhammad S. Virk

This paper describes a case study of wind resource assessment in cold climate region. One-year SCADA data from a wind park has been used to make a comparison with the Computational Fluid Dynamics (CFD) based numerical simulations of wind resource assessment and Annual Energy Production (AEP). To better understand the wind turbine wake flow effects on the energy production, ‘Jessen wake model ‘is used for the numerical simulations. Results show wind resource maps at different elevations, where wind turbine wake flow effects the wind turbine performance and resultant power production. CFD simulations provided a good insight of the flow behavior across each wind turbine, which helped to better understand the wind turbine wake flow effects on wind turbine performance and annual energy production. A good agreement is found between numerical simulations and field SCADA data analysis in this study.


2021 ◽  
Vol 298 ◽  
pp. 117245
Author(s):  
Basem Elshafei ◽  
Alfredo Peña ◽  
Dong Xu ◽  
Jie Ren ◽  
Jake Badger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document