wind resource assessment
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 74)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Author(s):  
M. G. M. Khan ◽  
M. Rafiuddin Ahmed

Abstract The two-parameter Weibull distribution has garnered much attention in the assessment of windenergy potential. The estimation of the shape and scale parameters of the distribution has broughtforth a successful tool for the wind energy industry. However, it may be inappropriate to use thetwo-parameter Weibull distribution to assess energy at every location, especially at sites wherelow wind speeds are frequent, such as the Equatorial region. In this work, a robust technique inwind resource assessment using a Bayesian approach for estimating Weibull parameters is firstproposed. Secondly, the wind resource assessment techniques using a two-parameter Weibulldistribution and a three-parameter Weibull distribution which is a generalized form of twoparameterWeibull distribution are compared. Simulation studies confirm that the Bayesianapproach seems a more robust technique for accurate estimation of Weibull parameters. Theresearch is conducted using data from seven sites in Equatorial region from 1o N of Equator to 19oSouth of Equator. Results reveal that a three-parameter Weibull distribution with non-zero shiftparameter is a better fit for wind data having a higher percentage of low wind speeds (0-1 m/s) andlow skewness. However, wind data with a smaller percentage of low wind speeds and highskewness showed better results with a two-parameter distribution that is a special case of threeparameterWeibull distribution with zero shift parameter. The results also demonstrate that theproposed Bayesian approach and application of a three-parameter Weibull distribution areextremely useful in accurate estimate of wind power and annual energy production.


2022 ◽  
pp. 0309524X2110693
Author(s):  
Sajeer Ahmad ◽  
Muhammad Abdullah ◽  
Ammara Kanwal ◽  
Zia ul Rehman Tahir ◽  
Usama Bin Saeed ◽  
...  

The growth rate of offshore wind is increasing due to technological advancement and reduction in cost. An approach using mast measured data at coastline and reanalysis data is proposed for offshore wind resource assessment, especially for developing countries. The evaluation of fifth generation European Reanalysis (ERA5) data was performed against measured data using statistical analysis. ERA5 data slightly underestimates wind speed and wind direction with percentage bias of less than 1%. Wind resource assessment of region in Exclusive Economic Zone (EEZ) of Pakistan was performed in terms of wind speed and Wind Power Density (WPD). The range of monthly mean wind speed and WPD in the region was 4.03–8.67 m/second and 73–515 W/m2 respectively. Most-probable wind speed and dominating wind direction on corners and center of the region were found using probability distributions and wind rose diagrams respectively. Most-probable wind speed ranges 4.41–7.64 m/second and dominating wind direction is southwest.


Author(s):  
Stylianos Hadjipetrou ◽  
Stelios Liodakis ◽  
Anastasia Sykioti ◽  
Loukas Katikas ◽  
No-Wook Park ◽  
...  

2021 ◽  
Vol 298 ◽  
pp. 117245
Author(s):  
Basem Elshafei ◽  
Alfredo Peña ◽  
Dong Xu ◽  
Jie Ren ◽  
Jake Badger ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4169
Author(s):  
Giovanni Gualtieri

The reliability of ERA5 reanalyses for directly predicting wind resources and energy production has been assessed against observations from six tall towers installed over very heterogeneous sites around the world. Scores were acceptable at the FINO3 (Germany) offshore platform for both wind speed (bias within 1%, r = 0.95−0.96) and capacity factor (CF, at worst biased by 6.70%) and at the flat and sea-level site of Cabauw (Netherlands) for both wind speed (bias within 7%, r = 0.93−0.94) and CF (bias within 6.82%). Conversely, due to the ERA5 limited resolution (~31 km), large under-predictions were found at the Boulder (US) and Ghoroghchi (Iran) mountain sites, and large over-predictions were found at the Wallaby Creek (Australia) forested site. Therefore, using ERA5 in place of higher-resolution regional reanalysis products or numerical weather prediction models should be avoided when addressing sites with high variation of topography and, in particular, land use. ERA5 scores at the Humansdorp (South Africa) coastal location were generally acceptable, at least for wind speed (bias of 14%, r = 0.84) if not for CF (biased by 20.84%). However, due to the inherent sea–land discontinuity resulting in large differences in both surface roughness and solar irradiation (and thus stability conditions), a particular caution should be paid when applying ERA5 over coastal locations.


2021 ◽  
Author(s):  
Jia Yi Jin ◽  
Timo Karlsson ◽  
Muhammad S. Virk

Abstract. Ice detection of wind turbine and estimating the resultant production losses is challenging, but very important, as wind energy project decisions in cold regions are based on these estimated results. This paper describes the comparison of a statistical (T19IceLossMethod) and numerical (Computational Fluid Dynamics, CFD) case study of wind resource assessment and estimation of resultant Annual Energy Production (AEP) due to ice of a wind park in ice prone cold region. Three years Supervisory Control and Data Acquisition (SCADA) data from a wind park located in arctic region is used for this study. Statistical analysis shows that the relative power loss due to icing related stops is the main issue for this wind park. To better understand the wind flow physics and estimation of the wind turbine wake losses, Larsen wake model is used for the CFD simulations, where results show that it is important to use the wake loss model for CFD simulations of wind resource assessment and AEP estimation of a wind park. A preliminary case study about wind park layout optimization has also been carried out which shows that AEP can be improved by optimizing the wind park layout and CFD simulations can be a good tool.


Sign in / Sign up

Export Citation Format

Share Document