Performance improvement of polymer electrolyte membrane fuel cell by gas diffusion layer with atomic-layer-deposited HfO2 on microporous layer

2021 ◽  
Vol 236 ◽  
pp. 114070
Author(s):  
In Seop Lim ◽  
Byeonghyun Kang ◽  
Jin Young Park ◽  
Min Soo Kim
2013 ◽  
Vol 10 (2) ◽  
Author(s):  
Hao-Ming Chang ◽  
Min-Hsing Chang

In this study, the performance of a polymer electrolyte membrane fuel cell with double-side microporous layer (MPL) coating on gas diffusion layer (GDL) is investigated experimentally. A standard commercial SGL® 10BA carbon paper is used as the substrate and it is coated with MPL on both sides of the paper with different composition. Three different carbon powders are used in the experiments, including Vulcan XC-72R, Acetylene black, and Black Pearls 2000. The effect of polytetrafluoroethylene (PTFE) content is also considered. A single cell testing apparatus is constructed to measure the cell performance and evaluate the effect of GDL with double-side MPL coating. Accordingly, the optimal fabrication parameters of double-side MPL are determined. The result shows that under the same operating conditions, the performance of fuel cell using GDL with double-side MPL is better than that using general single-side MPL. The Acetylene black is found to give the best cell performance than the others. The optimal composition of MPL on the surfaces facing to the catalyst layer and flow-channel plate are 1.25 mg/cm2 and 0.25 mg/cm2, respectively. Besides, the optimal PTFE content is the same on both sides of MPL which is found to be 20 wt%.


Author(s):  
J. Yablecki ◽  
A. Bazylak

The anisotropic and heterogeneous effective thermal conductivity of the gas diffusion layer (GDL) of the polymer electrolyte membrane fuel cell was determined in the through-plane direction using an analytical thermal resistance model. The geometry of the GDL was reconstructed using porosity profiles obtained through microscale computed tomography imaging of four commercially available GDL materials. The effective thermal conductivity increases almost linearly with increasing bipolar plate compaction pressure. The effective thermal conductivity was also seen to increase with increasing GDL thickness as bulk porosity remained almost constant. The effect of the heterogeneous through-plane porosity distribution on the effective thermal conductivity is discussed. The outcomes of this work will provide insight into the effect of heterogeneity and anisotropy of the GDL on the thermal management required for improved PEMFC performance.


Sign in / Sign up

Export Citation Format

Share Document