scholarly journals Numerical analysis of a medium scale latent energy storage unit for district heating systems

Energy ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Francesco Colella ◽  
Adriano Sciacovelli ◽  
Vittorio Verda
Author(s):  
Mustafa Aktaş ◽  
Meltem Koşan ◽  
Erhan Arslan ◽  
Azim Doğuş Tuncer

The integrated usage of solar energy systems, heat pump applications, and thermal energy storage units is an effective way for heating systems due to their sustainability and stability in operations. In this study, a novel direct solar-assisted heat pump with thermal energy system has been designed which uses the solar collector as the evaporator of the heat pump. Besides, two-dimensional transient numeric analyses have been conducted for the thermal energy storage unit using the ANSYS Fluent 16.2 commercial software package. With this direct system, the heat required for heating systems is supplied from the condenser with the heat received from the solar collector of the working fluid. For an effective and high performance system, the solar collector is designed as a double-pass which provided superheating of the working fluid. It is aimed to store the surplus energy from the solar energy in the thermal energy storage unit and to operate the system continuously and efficiently in both sunny and overcast weather conditions. Furthermore, the system has been analyzed theoretically and the results show that coefficient of performance may improve. As a result, this newly designed system can be successfully applied for thermal applications.


2021 ◽  
pp. 219-234
Author(s):  
Maciej Raczyński ◽  
Artur Wyrwa ◽  
Marcin Pluta ◽  
Wojciech Suwała

AbstractThis chapter examines the role of centralized district heating (DH) systems in context of energy system flexibility and decarbonization. The analysis is performed by applying the model TIMES-Heat-EU. Capacity expansion and operation of the district heating generation units is mainly driven by the evolution of the district heating demand, which varies between the REFLEX scenarios. In all scenarios fuel and technology switches toward bioenergy and natural gas leading to CO2 emission reduction. Since the total amount of energy produced (both heat and electricity) is the highest in the High-RES centralized scenario, the corresponding CO2 emissions for district heating are the highest as well. The CO2 emissions can be reduced by ⁓60% in 2050 compared to 2015. Furthermore, the role of thermal energy storage and power-to-heat technologies is examined.


Sign in / Sign up

Export Citation Format

Share Document