scholarly journals Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification

Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119650
Author(s):  
K. Fürsatz ◽  
J. Fuchs ◽  
F. Benedikt ◽  
M. Kuba ◽  
H. Hofbauer
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vilailuck Siriwongrungson ◽  
Malinee Prasong ◽  
Janjira Hongrapipat ◽  
Reinhard Rauch ◽  
Shusheng Pang ◽  
...  

Gasification system performance generally depends on feed moisture content, activity of bed material, gasifier and combustor temperatures, and scrubber media. The tar concentration and gas composition of product gas are two indicators of the gasification system performance. In this research, the effects of gasifier temperature and the activity of bed material on the tar concentration and gas composition of the product gas produced from a dual fluidized bed (DFB) gasification system power plant were investigated. The DFB gasification system power plant is located in Nong Bua district, Nakhon Sawan province, Thailand. Two periods of gasification operation were examined. These two periods were when the olivine was freshy activated and then after a period of operation. The gasifier temperature had several peaks during the operation, which caused the product gas composition to fluctuate. When the olivine had been used for a period, the percentage of hydrogen was approximately 3% higher than when the olivine had been freshly activated, and a lower heating value was observed, which was probably due to lower heating value of hydrogen. The tar concentration was substantially lower when compared with the freshly activated olivine. When the olivine was used for a period, the average tar concentration was 56±22 mg/Nm3 (this is after 95 h continuous operating time) while the average tar concentration of the freshly activate olivine was 872±125 mg/Nm3 (which was after 34.5 h continuous operating time). It was concluded that the average tar concentration and gas composition were influenced by the activity of the bed material and the gasification temperature.


2019 ◽  
Vol 238 ◽  
pp. 1138-1149 ◽  
Author(s):  
Florian Benedikt ◽  
Matthias Kuba ◽  
Johannes Christian Schmid ◽  
Stefan Müller ◽  
Hermann Hofbauer

2019 ◽  
Vol 42 (3) ◽  
pp. 690-698
Author(s):  
Steven Wang ◽  
Woo Jin Lee ◽  
Chao'en Li ◽  
Benny Kuan ◽  
Nick Burke ◽  
...  

2007 ◽  
Vol 11 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Kyriakos Panopoulos ◽  
Lydia Fryda ◽  
Emmanuel Kakaras

Three promising biomass fuels from southern European regions were gasified atmospherically with air in a lab-scale fluidized bed reactor with quartz or olivine as bed material. The fuels used were an agro-industrial residue (olive bagasse) and the energy crops giant reed and sweet sorghum bagasse. Varying air ratios and temperatures were tested to study the impact on the product gas composition and tar load. Tars were higher in the case of olive bagasse, attributed to its higher lignin content compared to the other two biomasses with higher cellulose. Giant reed gasification causes agglomeration and defluidisation problems at 790?C while olive bagasse shows the least agglomeration tendency. The particular olivine material promoted the destruction of tars, but to a lesser level than other reported works; this was attributed to its limited iron content. It also promoted the H2 and CO2 production while CO content decreased. Methane yield was slightly affected (decreased) with olivine, higher temperatures, and air ratios. Air ratio increase decreased the tar load but at the same time the gas quality deteriorated. .


Author(s):  
Tungalagtamir B ◽  
Enkhtsetseg E ◽  
Chao Lumen ◽  
Narantsetseg M ◽  
Avid B ◽  
...  

The gasification tests for the Alagtolgoi and Ailbayan coal deposits were conducted in the temperature up to 850°C using bench scale reactor in order to evaluate product gas composition. Prior to the gasification experiments, the raw coal was pyrolysed in a stainless steel reactor under N2 atmosphere at a temperature of 500°C for 1 h. General behavior of the coal conversion was quite similar for both coals. The gasification tests show that an increase in temperature enhances the formation of hydrogen, carbon dioxide and carbon monoxide. The highest yield of hydrogen and carbon dioxide concentrations of the Ailbayan coal are achieved at temperature of 850°C, which were 2.859 mmol⋅g-1⋅min-1 and 1.054 mmol⋅g-1⋅min-1 respectively. However maximum rate of hydrogen for Alagtolgoi subbituminous coal reached around 800°C. Overall results show that the maximum gasification rate is reached earlier for subbituminous coal than for bituminous coal, but product gas evolution was higher for the investigated bituminous coal.


2021 ◽  
Author(s):  
Prashant Sharma ◽  
Bhupendra Gupta ◽  
Mukesh Pandey

Abstract Present study concerns with the production of H2 rich product gas by thermochemical energy conversion having biomass gasification as a route for the four biomasses i.e., Kasai Saw Dust, Lemon Grass, Wheat Straw and Pigeon Pea Seed Coat. The biomasses are from the family of woody biomass, grasses, agricultural waste and food process industry wastes. Waste engine oil as an additive is used, which also acts as a binder. Air gasification and Air-steam gasification is applied and compared for product gas composition, hydrogen yield and other performance parameters like lower heating value, energy yield. Product gas constituents, hydrogen production is examined with different steam to biomass ratio (S/B ratio) and equivalence ratio. The equivalence ratio varies from 0.20–0.40 and the steam to biomass ratio varies between 0–4. The waster engine oil is mixed with the biomasses with different percentage of 5 and 10 wt%. For enhancement of feedstock quality palletization process is applied. The H2 yield is greatly affected by the equivalence ratio. Results show maximum H2 production and higher calorific value of product gas at an air to fuel of 0.26 for all the biomass pallets. Also, the S/B ratio observed as important aspect for hydrogen enrichment. Hydrogen yield is maximum at 2.4 steam to biomass ratio. This study considers the rarely studied Indian biomasses with waste engine oil as an additive for hydrogen-rich product gas production and will be beneficial for small scale hydrogen-rich syngas production considering the central Indian region originated biomasses. Statement of Novelty (SON): Research work belongs to eco-friendly use of rarely studied Indian biomass pallets. Equivalence air to fuel ratio (E/R ratio), steam to biomass ratio (S/B ratio) and waste engine oil as additive have been considered to upgrade H2 content and Calorific Value (CV) of the product gas. Novelty of work include use of waste engine oil as additive to make biomass pallets.


Energy ◽  
2019 ◽  
Vol 173 ◽  
pp. 1256-1272 ◽  
Author(s):  
A.M. Mauerhofer ◽  
J.C. Schmid ◽  
F. Benedikt ◽  
J. Fuchs ◽  
S. Müller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document