scholarly journals Atmospheric fluidized bed gasification of promising biomass fuels in southern European regions

2007 ◽  
Vol 11 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Kyriakos Panopoulos ◽  
Lydia Fryda ◽  
Emmanuel Kakaras

Three promising biomass fuels from southern European regions were gasified atmospherically with air in a lab-scale fluidized bed reactor with quartz or olivine as bed material. The fuels used were an agro-industrial residue (olive bagasse) and the energy crops giant reed and sweet sorghum bagasse. Varying air ratios and temperatures were tested to study the impact on the product gas composition and tar load. Tars were higher in the case of olive bagasse, attributed to its higher lignin content compared to the other two biomasses with higher cellulose. Giant reed gasification causes agglomeration and defluidisation problems at 790?C while olive bagasse shows the least agglomeration tendency. The particular olivine material promoted the destruction of tars, but to a lesser level than other reported works; this was attributed to its limited iron content. It also promoted the H2 and CO2 production while CO content decreased. Methane yield was slightly affected (decreased) with olivine, higher temperatures, and air ratios. Air ratio increase decreased the tar load but at the same time the gas quality deteriorated. .

2004 ◽  
Vol 18 (6) ◽  
pp. 1909-1920 ◽  
Author(s):  
Vesna Barišić ◽  
Ahmad Kalantar Neyestanaki ◽  
Fredrik Klingstedt ◽  
Pia Kilpinen ◽  
Kari Eränen ◽  
...  

2012 ◽  
Vol 26 (7) ◽  
pp. 4550-4559 ◽  
Author(s):  
Alejandro Grimm ◽  
Marcus Öhman ◽  
Therése Lindberg ◽  
Andreas Fredriksson ◽  
Dan Boström

2014 ◽  
Vol 61 ◽  
pp. 1957-1960
Author(s):  
Zhipei Yan ◽  
Jihong Li ◽  
Shizhong Li ◽  
Ting Cui ◽  
Yan Jiang ◽  
...  

Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119650
Author(s):  
K. Fürsatz ◽  
J. Fuchs ◽  
F. Benedikt ◽  
M. Kuba ◽  
H. Hofbauer

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amandine Leroy ◽  
Xavier Falourd ◽  
Loïc Foucat ◽  
Valérie Méchin ◽  
Fabienne Guillon ◽  
...  

Abstract Background Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. Results HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β–O–4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in $${T}_{1\rho }^{H}$$ T 1 ρ H , $${T}_{HH}$$ T HH and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5–15 nm pore size range. Conclusion The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1333
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Mariano Crimaldi ◽  
Vittorio Pasquino ◽  
Roberta Padulano ◽  
Giovanni Battista Chirico

Estimating the main hydrodynamic features of real vegetated water bodies is crucial to assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation stands have a high impact on vegetated channels. The present work has the aim to integrate riparian vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant reed) stands, starting from flow average velocities measurements at 30 cross-sections identified along the channel. A map of riparian vegetation cover was obtained through digital processing of Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions. In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk drag predictions along the vegetated drainage channel.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Selina Hafner ◽  
Max Schmid ◽  
Günter Scheffknecht

Finding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer–Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water–gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.


Sign in / Sign up

Export Citation Format

Share Document