scholarly journals Hydrogen rich product gas from air-steam gasification of Indian biomasses with waste engine oil as binder

Author(s):  
Prashant Sharma ◽  
Bhupendra Gupta ◽  
Mukesh Pandey

Abstract Present study concerns with the production of H2 rich product gas by thermochemical energy conversion having biomass gasification as a route for the four biomasses i.e., Kasai Saw Dust, Lemon Grass, Wheat Straw and Pigeon Pea Seed Coat. The biomasses are from the family of woody biomass, grasses, agricultural waste and food process industry wastes. Waste engine oil as an additive is used, which also acts as a binder. Air gasification and Air-steam gasification is applied and compared for product gas composition, hydrogen yield and other performance parameters like lower heating value, energy yield. Product gas constituents, hydrogen production is examined with different steam to biomass ratio (S/B ratio) and equivalence ratio. The equivalence ratio varies from 0.20–0.40 and the steam to biomass ratio varies between 0–4. The waster engine oil is mixed with the biomasses with different percentage of 5 and 10 wt%. For enhancement of feedstock quality palletization process is applied. The H2 yield is greatly affected by the equivalence ratio. Results show maximum H2 production and higher calorific value of product gas at an air to fuel of 0.26 for all the biomass pallets. Also, the S/B ratio observed as important aspect for hydrogen enrichment. Hydrogen yield is maximum at 2.4 steam to biomass ratio. This study considers the rarely studied Indian biomasses with waste engine oil as an additive for hydrogen-rich product gas production and will be beneficial for small scale hydrogen-rich syngas production considering the central Indian region originated biomasses. Statement of Novelty (SON): Research work belongs to eco-friendly use of rarely studied Indian biomass pallets. Equivalence air to fuel ratio (E/R ratio), steam to biomass ratio (S/B ratio) and waste engine oil as additive have been considered to upgrade H2 content and Calorific Value (CV) of the product gas. Novelty of work include use of waste engine oil as additive to make biomass pallets.

2016 ◽  
Vol 1133 ◽  
pp. 654-658 ◽  
Author(s):  
Abrar Inayat ◽  
Murni Melati Ahmad ◽  
Mohamed Ibrahim Abdul Mutalib ◽  
Suzana Yusup ◽  
Zakir Khan

In Malaysia, due to abundance of oil palm waste, it is a good candidate to be used as a feedstock for syngas and hydrogen production. Biomass steam gasification is one of the promising methods for syngas production. This work focuses on the steam gasification with in-situ CO2 capture using CaO as absorbent materials for hydrogen production from palm oil empty fruit bunch (EFB). Three parameters (temperature, steam/biomass ratio and sorbent/biomass ratio) has been studied on the lower heating value (LHV) and higher heating value (HHV) of product gas. The results shows that the current study gives higher value of LHV at lower temperature of 823K. The higher value of LHV is obtained due to the lower concentration of CO2 caused by using CaO as sorbent material. Furthermore, CaO materials enhanced the concentration of concentration of the CO, H2 and CH4 in the product gas. The results are also compared against published data as well.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shanmughom Rupesh ◽  
Chandrasekharan Muraleedharan ◽  
Palatel Arun

This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15.


Author(s):  
Nicolas Piatkowski ◽  
Christian Wieckert ◽  
Aldo Steinfeld

Gasification of coal, biomass, and other carbonaceous materials for high-quality syngas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a SiC-coated graphite plate, with the upper one serving as the radiative absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5-kW prototype reactor with an 8 cm-depth, 14.3 cm-diameter cylindrical bed was fabricated and tested in the High-Flux Solar Simulator at PSI, subjected to solar flux concentrations up to 2300 suns. Beech charcoal was used as a model feedstock and converted into high-quality syngas (predominantly H2 and CO) with packed-bed temperatures up to 1500 K, an upgrade factor of the calorific value of 1.33, and an energy conversion efficiency of 29%. Pyrolysis was evident through the evolution of higher gaseous hydrocarbons during heating of the packed bed. The engineering design, fabrication, and testing of the solar reactor are described.


2015 ◽  
Vol 1113 ◽  
pp. 654-659
Author(s):  
Ahmed A Al-Ghamdi ◽  
Abrar Inayat

The need to find a renewable and sustainable energy has transformed into a demand due to the depletion of fossil fuel, and more importantly, the greenhouse gasses concerns. Hydrogen is a one of the clean and sustainable energy source. In addition, hydrogen used as raw material in industries, such as fertilizer plant, refinery and methanol production plant. Hydrogen has the potential as a clean energy carrier and the date pits availability in Saudi Arabia, the gasification of date pits is proposed. This work focused on developing a flowsheet to evaluate the feasibility of producing hydrogen from the gasification of date pits via a simulation work in Aspen Hysys. Using the simulation model, a study has been made to investigate the effects of temperature and steam/biomass ratio on the product gas, hydrogen yield and carbon conversion. The model has been also validated with literature and showed good agreement. The favorable temperature of the gasifier for high hydrogen yield is predicted to be in the range of 845-910°C. Based on the results, at temperature is 850°C and steam/biomass ratio of 0.8, maximum conversion and hydrogen yield achieved.


2019 ◽  
Vol 8 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Poramate Sittisun ◽  
Nakorn Tippayawong ◽  
Sirivatch Shimpalee

This work studied generation of producer gas using oxygen-enriched air and steam mixture as gasifying medium. Corn residues consisting of cobs and stover were used as biomass feedstock. Both corn residues were pelletized and gasified separately with normal air, oxygen enriched air and steam mixture in a fixed bed reactor. Effects of oxygen concentration in enriched air (21-50%), equivalence ratio (0.15-0.35), and steam to biomass ratio (0-0.8) on the yield of product gas, the combustible gas composition such as H2, CO, and CH4, the lower heating value (LHV), and the gasification efficiency were investigated. It was found that the decrease in nitrogen dilution in oxygen enriched air increased proportion of combustible gas components, improved the LHV of producer gas, but gasification efficiency was not affected. The increase in equivalence ratio favoured high product gas yield but decreased combustible gas components and LHV. It was also observed that introduction of steam enhanced H2 production but excessive steam degraded fuel gas quality and decreased gasification efficiency. The highest gasification efficiency of each oxygen concentration was at equivalence ratio of 0.3 and steam to biomass ratio of 0.58 for cob, and 0.22 and 0.68 for stover, respectively. ©2019. CBIORE-IJRED. All rights reserved


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119650
Author(s):  
K. Fürsatz ◽  
J. Fuchs ◽  
F. Benedikt ◽  
M. Kuba ◽  
H. Hofbauer

2021 ◽  
Vol 35 (6) ◽  
pp. 4997-5005
Author(s):  
Xiaoxia Yang ◽  
Shengshen Gu ◽  
Amanj Kheradmand ◽  
Yijiao Jiang

Sign in / Sign up

Export Citation Format

Share Document