Novel integrated system of LNG regasification / electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility

Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 121972
Author(s):  
António Domingues ◽  
Henrique A. Matos ◽  
Pedro M. Pereira
Author(s):  
Bo Liu ◽  
Franck David ◽  
Philippe Riviere ◽  
Christophe Coquelet ◽  
Renaud Gicquel

A two stage Rankine cycle for power generation is presented in this paper. It is made of a water steam Rankine cycle and an Organic Rankine bottoming Cycle. By using an organic working fluid with higher density than water, it is possible to reduce the installation size and to use an air-cooled condenser. Following our previous studies, 3 high critical temperature organic fluids, R245fa, R365mfc, isopentane (iC5) and ammonia are tested as potential candidates for this application. The performances of the two stage Rankine cycle operating with those different working fluids are evaluated for a nuclear plant case. The size of system components (heat exchangers and turbine) is estimated for each tested fluid. The influences of their thermodynamic and transport properties are analyzed. In addition, an estimation of the installation cost is done by introducing cost functions.


2015 ◽  
Vol 36 (2) ◽  
pp. 75-84
Author(s):  
Yan-Na Liu ◽  
Song Xiao

AbstractIn this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.


Sign in / Sign up

Export Citation Format

Share Document