Variational multiscale element free Galerkin method for convection-diffusion-reaction equation with small diffusion

2014 ◽  
Vol 46 ◽  
pp. 85-92 ◽  
Author(s):  
Xiaohua Zhang ◽  
Hui Xiang
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Ping Zhang ◽  
Xiaohua Zhang ◽  
Laizhong Song

Variational multiscale element free Galerkin (VMEFG) method is applied to Burgers’ equation. It can be found that, for the very small diffusivity coefficients, VMEFG method still suffers from instability in the presence of boundary or interior layers. In order to overcome this problem, the high order low-pass filter is used to smooth the solution. Three test examples with very small diffusion are presented and the solutions obtained are compared with exact solutions and some other numerical methods. The numerical results are found in which the VMEFG coupled with low-pass filter works very well for Burgers’ equation with very small diffusivity coefficients.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2524
Author(s):  
Fengxin Sun ◽  
Jufeng Wang ◽  
Xiang Kong ◽  
Rongjun Cheng

By introducing the dimension splitting method (DSM) into the generalized element-free Galerkin (GEFG) method, a dimension splitting generalized interpolating element-free Galerkin (DS-GIEFG) method is presented for analyzing the numerical solutions of the singularly perturbed steady convection–diffusion–reaction (CDR) problems. In the DS-GIEFG method, the DSM is used to divide the two-dimensional CDR problem into a series of lower-dimensional problems. The GEFG and the improved interpolated moving least squares (IIMLS) methods are used to obtain the discrete equations on the subdivision plane. Finally, the IIMLS method is applied to assemble the discrete equations of the entire problem. Some examples are solved to verify the effectiveness of the DS-GIEFG method. The numerical results show that the numerical solution converges to the analytical solution with the decrease in node spacing, and the DS-GIEFG method has high computational efficiency and accuracy.


Sign in / Sign up

Export Citation Format

Share Document