precise time
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 110)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 17 (01) ◽  
pp. C01004
Author(s):  
Jelena Mijuskovic

Abstract The electromagnetic calorimeter (ECAL) of the CMS detector has played an important role in the physics program of the experiment, delivering outstanding performance throughout data taking. The high-luminosity LHC will pose new challenges. The four to five-fold increase of the number of interactions per bunch crossing will require superior time resolution and noise rejection capabilities. For these reasons the electronics readout has been completely redesigned. A dual gain trans-impedance amplifier and an ASIC providing two 160 MHz ADC channels, gain selection, and data compression will be used in the new readout electronics. The trigger decision will be moved off-detector and will be performed by powerful and flexible FPGA processors, allowing for more sophisticated trigger algorithms to be applied. The upgraded ECAL will be capable of high-precision energy measurements throughout HL-LHC and will greatly improve the time resolution for photons and electrons above 10 GeV.


2021 ◽  
Vol 57 (2) ◽  
pp. 025003
Author(s):  
William H Baird

Abstract The United States’ Global Positioning System (GPS), and similar geolocation systems such as Galileo, GLONASS, and Beidou are used by people all over the globe. Modern receivers of these global navigation satellite systems can track multiple satellites from different constellations. Casual, non-technical users are probably aware that the positional information provided is typically accurate to within a few meters. We could expect physics students to infer that, because these systems rely on the travel time of radio signals, this implies time measurement accuracy on the scale of tens of nanoseconds. This feature has led to GPS-enabled Internet time servers providing stratum 1 accuracy for under $1000. In this paper, we will show that we can couple a GPS unit to a field programmable gate array (FPGA) to determine the temperature in a room. The more serious application of this GPS-FPGA pairing is to provide precise time-stamping of events, thereby synchronizing data collection between stations across a room or across the globe.


2021 ◽  
Vol 173 ◽  
pp. 112878
Author(s):  
Bo Zhang ◽  
Zhitao Peng ◽  
Yanwen Xia ◽  
Zhihong Sun ◽  
Kuixing Zheng ◽  
...  

Author(s):  
Pengfei Zhang ◽  
Rui Tu ◽  
Xiaochun Lu ◽  
Yuping Gao ◽  
Lihong Fan

Abstract The global positioning system (GPS) carrier-phase (CP) technique is a widely used spatial tool for remote precise time and frequency transfer. However, the performance of traditional GPS time and frequency transfer has been limeted because the ambiguity paramter is still the float solution. This study focuses on the performance of GPS precise time and frequency transfer with integer ambiguity resolution and discusses the corresponding mathematical model. Fractional-cycle bias (FCB) products were estimated by using an ionosphere-free combination. The results show that the satellite wide-lane (WL) FCB products are stable, with a standard deviation (STD) of 0.006 cycles. The narrow-lane (NL) FCB products were estimated over 15 min with the STD of 0.020 cycles. More than 98% of the WL and NL residuals are smaller than 0.25 cycles, which helps to fix the ambiguity into integers during the time and frequency transfer. Subsequently, the performances of the time transfers with integer ambiguity resolution at two time links between international laboratories were assessed in real-time and post-processing modes and compared. The results show that fixing the ambiguity into an integer in the real-time mode significantly decreases the convergence time compared with the traditional float approach. The improvement is ~49.5%. The frequency stability of the fixed solution is notably better than that of the float solution. Improvements of 48.15% and 27.9% were determined for the IENG–USN8 and WAB2–USN8 time links, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ekaterina D. Gribkova ◽  
Rhanor Gillette

AbstractA largely unexplored question in neuronal plasticity is whether synapses are capable of encoding and learning the timing of synaptic inputs. We address this question in a computational model of synaptic input time difference learning (SITDL), where N‐methyl‐d‐aspartate receptor (NMDAR) isoform expression in silent synapses is affected by time differences between glutamate and voltage signals. We suggest that differences between NMDARs’ glutamate and voltage gate conductances induce modifications of the synapse’s NMDAR isoform population, consequently changing the timing of synaptic response. NMDAR expression at individual synapses can encode the precise time difference between signals. Thus, SITDL enables the learning and reconstruction of signals across multiple synapses of a single neuron. In addition to plausibly predicting the roles of NMDARs in synaptic plasticity, SITDL can be usefully applied in artificial neural network models.


2021 ◽  
Vol 28 (11) ◽  
pp. 414-421
Author(s):  
Rojina Samifanni ◽  
Mudi Zhao ◽  
Arely Cruz-Sanchez ◽  
Agarsh Satheesh ◽  
Unza Mumtaz ◽  
...  

The ability to generate memories that persist throughout a lifetime (that is, memory persistence) emerges in early development across species. Although it has been shown that persistent fear memories emerge between late infancy and adolescence in mice, it is unclear exactly when this transition takes place, and whether two major fear conditioning tasks, contextual and auditory fear, share the same time line of developmental onset. Here, we compared the ontogeny of remote contextual and auditory fear in C57BL/6J mice across early life. Mice at postnatal day (P)15, 21, 25, 28, and 30 underwent either contextual or auditory fear training and were tested for fear retrieval 1 or 30 d later. We found that mice displayed 30-d memory for context– and tone–fear starting at P25. We did not find sex differences in the ontogeny of either type of fear memory. Furthermore, 30-d contextual fear retrieval led to an increase in the number of c-Fos positive cells in the prelimbic region of the prefrontal cortex only at an age in which the contextual fear memory was successfully retrieved. These data delineate a precise time line for the emergence of persistent contextual and auditory fear memories in mice and suggest that the prelimbic cortex is only recruited for remote memory recall upon the onset of memory persistence.


Sign in / Sign up

Export Citation Format

Share Document