The method of fundamental solution for elastic wave scattering and dynamic stress concentration in a fluid-saturated poroelastic layered half-plane

2017 ◽  
Vol 84 ◽  
pp. 154-167 ◽  
Author(s):  
Zhongxian Liu ◽  
Jianwen Liang ◽  
Chengqing Wu ◽  
Ruibin Zhao ◽  
Yan Li
2007 ◽  
Vol 348-349 ◽  
pp. 521-524 ◽  
Author(s):  
Hong Liang Li ◽  
Guang Cai Han ◽  
Hong Li

In this paper, the method of Green’s function is used to investigate the problem of dynamic stress concentration of circular lining and interior linear crack impacted by incident SH-wave. The train of thought for this problem is that: Firstly, a Green’s function is constructed for the problem, which is a fundamental solution of displacement field for an elastic space possessing a circular lining while bearing out-of-plane harmonic line source force at any point in the lining. In terms of the solution of SH-wave’s scattering by an elastic space with a circular lining, anti-plane stresses which are the same in quantity but opposite in direction to those mentioned before, are loaded at the region where the crack existent actually, we called this process “crack-division”. Finally, the expressions of the displacement and stress are given when the lining and the crack exist at the same time. Then, by using the expressions, some example is provided to show the effect of crack on the dynamic stress concentration around circular lining.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 246
Author(s):  
Hui Qi ◽  
Fuqing Chu ◽  
Yang Zhang ◽  
Guohui Wu ◽  
Jing Guo

Wave diffusion in the composite soil layer with the lined tunnel structure is often encountered in the field of seismic engineering. The wave function expansion method is an effective method for solving the wave diffusion problem. In this paper, the wave function expansion method is used to present a semi-analytical solution to the shear horizontal (SH) wave scattering problem of a circular lined tunnel under the covering soil layer. Considering the existence of the covering soil layer, the great arc assumption (that is, the curved boundary instead of the straight-line boundary) is used to construct the wavefield in the composite soil layer. Based on the wave field and boundary conditions, an infinite linear equation system is established by adding the application of complex variable functions. The finite term is intercepted and solved, and the accuracy of the solution is analyzed. Although truncation is inevitable, due to the Bessel function has better convergence, a smaller truncation coefficient can achieve mechanical accuracy. Based on numerical examples, the influence of SH wave incident frequency, soil parameters, and lining thickness on the dynamic stress concentration factor of lining is analyzed. Compared with the SH wave scattering problem by lining in a single medium half-space, due to the existence of the cover layer and the influence of its stiffness, the dynamic stress of the lining can be increased or inhibited. In addition, the lining thickness has obvious different effects on the dynamic stress concentration coefficient of the inner and outer walls of different materials.


2003 ◽  
Vol 24 (7) ◽  
pp. 808-816 ◽  
Author(s):  
Hu Chao ◽  
Li Feng-ming ◽  
Huang Wen-hu

Sign in / Sign up

Export Citation Format

Share Document